On the maximum number of consecutive integers on which a character is constant

Enrique Treviño

Swarthmore College
AMS-MAA Joint Meetings January 5, 2012

Preliminaries

- Let χ be a non-principal Dirichlet character to the prime modulus p.
- Let $H(p)$ be the maximum number of consecutive integers for which χ is constant.
- Trivially $H(p) \leq p$.
- By the Pólya-Vinogradov inequality, $H(p) \ll p^{1 / 2} \log p$.
- By the Burgess inequality, $H(p) \ll_{\varepsilon} p^{1 / 4+\varepsilon}$.

Explicit Estimates

Let χ be a non-principal Dirichlet character to the prime modulus p. Let $H(p)$ be the maximum number of consecutive integers for which χ is constant.

Theorem (Burgess, 1963)

$$
H(p)=O\left(p^{1 / 4} \log p\right) .
$$

Theorem (McGown, 2011)

$$
H(p)<\left\{\frac{\pi e \sqrt{6}}{3}+o(1)\right\} p^{1 / 4} \log p .
$$

Furthermore,

$$
H(p) \leq \begin{cases}7.06 p^{1 / 4} \log p, & \text { for } p \geq 5 \cdot 10^{18} \\ 7 p^{1 / 4} \log p, & \text { for } p \geq 5 \cdot 10^{55}\end{cases}
$$

In a conference in 1973, Norton made the following claim without proof:

Claim

$$
\begin{aligned}
& H(p) \leq 2.5 p^{1 / 4} \log p \text { for } p>e^{15} \approx 3.27 \times 10^{6} \text { and } \\
& H(p)<4.1 p^{1 / 4} \log p \text { for all odd } p .
\end{aligned}
$$

I was able to prove the claim (and a little more), improving on the theorem of McGown.

Main Theorem

Theorem (T)

Let χ be a non-principal Dirichlet character to the prime modulus p. Let $H(p)$ be the maximum number of consecutive integers for which χ is constant, then

$$
H(p)<\left\{\frac{\pi}{2} \sqrt{\frac{e}{3}}+o(1)\right\} p^{1 / 4} \log p .
$$

Furthermore,

$$
H(p) \leq\left\{\begin{array}{lc}
3.64 p^{1 / 4} \log p, & \text { for all odd } p, \\
1.55 p^{1 / 4} \log p, & \text { for } p \geq 2.5 \cdot 10^{9} .
\end{array}\right.
$$

Main ingredient

The main ingredient in the proof comes from estimating

$$
S_{\chi}(h, w)=\sum_{m=1}^{p}\left|\sum_{l=0}^{h-1} \chi(m+l)\right|^{2 w} .
$$

- Burgess showed that

$$
S_{\chi}(h, w)<(4 w)^{w+1} p h^{w}+2 w p^{1 / 2} h^{2 w}
$$

- McGown improved it to $S_{\chi}(h, w)<\frac{1}{4}(4 w)^{w} p h^{w}+(2 w-1) p^{1 / 2} h^{2 w}$.
- For quadratic characters, Booker showed

$$
S_{\chi}(h, w)<\frac{(2 w)!}{2^{w} w!} p h^{w}+(2 w-1) p^{1 / 2} h^{2 w} .
$$

- I showed that Booker's inequality holds for all characters.

Lower bound Lemma

Lemma

Let h and w be positive integers. Let χ be a non-principal Dirichlet character to the prime modulus p which is constant on $(N, N+H]$ and such that

$$
4 h \leq H \leq\left(\frac{h}{2}\right)^{2 / 3} p^{1 / 3}
$$

Let $X:=H / h$, then $X \geq 4$ and

$$
S_{\chi}(h, w) \geq\left(\frac{3}{\pi^{2}}\right) X^{2} h^{2 w+1} g(X)=A H^{2} h^{2 w-1} g(X)
$$

where $A=\frac{3}{\pi^{2}}$, and

$$
g(X)=1-\left(\frac{13}{12 A X}+\frac{1}{4 A X^{2}}\right)
$$

Laborious Proof of Lemma

Let a and b be integers satisfying $1 \leq a \leq\left\lfloor\frac{2 H}{h}\right\rfloor$ and

$$
\left|a \frac{N}{p}-b\right| \leq \frac{1}{\left\lfloor\frac{2 H}{h}\right\rfloor+1} \leq \frac{h}{2 H} .
$$

Now define $I(q, t)$ to be the real interval:

$$
I(q, t):=\left(\frac{N+p t}{q}, \frac{N+H+p t}{q}\right],
$$

for integers $0 \leq t<q \leq X$ and $\operatorname{gcd}(a t+b, q)=1$.

Given

$$
I(q, t):=\left(\frac{N+p t}{q}, \frac{N+H+p t}{q}\right]
$$

we have

- χ is constant inside the interval $I(q, t)$ since if $m \in I(q, t)$, then

$$
\chi(q) \chi(m)=\chi(q m)=\chi(q m-p t)=\chi(N+i)
$$

where $i \in(0, H]$.

- The $I(q, t)$ are disjoint (for this you need to use the restriction on H and on $a)$.
- $I(q, t) \subset(0, p)$.

Since the $I(q, t)$ are disjoint and they are contained in $(0, p)$, we have

$$
\begin{gathered}
S_{\chi}(h, w)=\sum_{m=0}^{p-1}\left|\sum_{I=0}^{h-1} \chi(m+I)\right|^{2 w} \geq \sum_{q, t} \sum_{m \in I(q, t)}\left|\sum_{l=0}^{h-1} \chi(m+l)\right|^{2 w} \\
\geq h^{2 w} \sum_{q, t}\left(\frac{H}{q}-h\right)=h^{2 w+1} \sum_{q \leq X} \sum_{\substack{0 \leq t<q \\
\operatorname{gcd}(a t+b, q)=1}}\left(\frac{X}{q}-1\right)
\end{gathered}
$$

Recall that $X=H / h$. Evaluating this last sum yields our lemma. The main difference between the technique Burgess and McGown use is that they have $X=H /(2 h)$ and then they evaluate the last sum with 1 instead of $\left(\frac{X}{q}-1\right)$.

Finishing the Proof of the Main Theorem

- Combining the upper and lower bounds on $S_{\chi}(h, w)$ we have

$$
A H^{2} h^{2 w-1} g(X) \leq S_{\chi}(h, w)<\frac{(2 w)!}{2^{w} w!} p h^{w}+(2 w-1) p^{1 / 2} h^{2 w} .
$$

- Optimizing for h and w asymptotically, we find the asymptotic in our theorem and we also prove that $H(p)<1.55 p^{1 / 4} \log p$ for $p \geq 10^{64}$.
- Since $H<\left(\frac{h}{2}\right)^{2 / 3} p^{1 / 3}$, we have to juggle a bit and we find that we are constrained to $p \geq 2.5 \times 10^{9}$.
- To cover the gaps between 2.5×10^{9} and 10^{64} we pick specific h 's and w's and check for intervals as depicted in the table on the following slide.

Table

w	h	p	w	h	p	w	h	p
6	26	$\left[2.5 \cdot 10^{9}, 10^{10}\right]$	6	28	$\left[10^{10}, 4 \cdot 10^{10}\right]$	7	28	$\left[4 \cdot 10^{10}, 10^{11}\right]$
7	32	$\left[10^{11}, 10^{12}\right]$	7	37	$\left[10^{12}, 10^{13}\right]$	8	41	$\left[10^{13}, 10^{14}\right]$
8	44	$\left[10^{14}, 10^{15}\right]$	9	45	$\left[10^{15}, 10^{16}\right]$	9	51	$\left[10^{16}, 10^{17}\right]$
9	59	$\left[10^{17}, 10^{18}\right]$	10	62	$\left[10^{18}, 10^{19}\right]$	11	63	$\left[10^{19}, 10^{20}\right]$
11	71	$\left[10^{20}, 10^{21}\right]$	12	72	$\left[10^{21}, 10^{23}\right]$	13	79	$\left[10^{23}, 10^{25}\right]$
15	82	$\left[10^{25}, 10^{27}\right]$	15	96	$\left[10^{27}, 10^{29}\right]$	17	97	$\left[10^{29}, 10^{31}\right]$
18	105	$\left[10^{31}, 10^{33}\right]$	18	119	$\left[10^{33}, 10^{35}\right]$	19	127	$\left[10^{35}, 10^{37}\right]$
20	135	$\left[10^{37}, 10^{39}\right]$	20	149	$\left[10^{39}, 10^{41}\right]$	22	150	$\left[10^{41}, 10^{43}\right]$
23	158	$\left[10^{43}, 10^{46}\right]$	25	166	$\left[10^{46}, 10^{49}\right]$	27	174	$\left[10^{49}, 10^{52}\right]$
29	183	$\left[10^{52}, 10^{55}\right]$	31	191	$\left[10^{55}, 10^{58}\right]$	33	200	$\left[10^{58}, 10^{62}\right]$
33	215	$\left[10^{62}, 10^{64}\right]$						

Table: As an example on how to read the table: when $w=10$ and $h=62$, then the constant 1.55 works for all $p \in\left[10^{18}, 10^{19}\right]$. It is also worth noting that the inequality $1.55 p^{1 / 4} \log p<h^{2 / 3} p^{1 / 3}$ is also verified for each choice of w and h.

For all p

To get a bound for all p we use the following theorem (established with elementary methods):

Theorem (Brauer)

$$
H(p)<\sqrt{2 p}+2
$$

Using this, one can show that $H(p)<3.64 p^{1 / 4} \log p$ whenever $p<3 \times 10^{6}$. Using the techniques from before one can show that for $p \geq 3 \times 10^{6}, H(p)<3.64 p^{1 / 4} \log p$. One of the obstacles preventing us from getting a lower number is the restriction $H<\left(\frac{h}{2}\right)^{2 / 3} p^{1 / 3}$.

Thank you!

