On the maximum number of consecutive integers on which a character is constant

Enrique Treviño

Swarthmore College

AMS-MAA Joint Meetings January 5, 2012

Enrique Treviño JM

JMM 2012

Preliminaries

- Let χ be a non-principal Dirichlet character to the prime modulus p.
- Let *H*(*p*) be the maximum number of consecutive integers for which *χ* is constant.
- Trivially $H(p) \leq p$.
- By the Pólya–Vinogradov inequality, $H(p) \ll p^{1/2} \log p$.
- By the Burgess inequality, $H(p) \ll_{\varepsilon} p^{1/4+\varepsilon}$.

・ロト ・聞 と ・ ヨ と ・ ヨ と …

э.

Explicit Estimates

Let χ be a non-principal Dirichlet character to the prime modulus *p*. Let H(p) be the maximum number of consecutive integers for which χ is constant.

Theorem (Burgess, 1963)

 $H(p) = O(p^{1/4}\log p).$

Theorem (McGown, 2011)

$$H(p) < \left\{ \frac{\pi e \sqrt{6}}{3} + o(1) \right\} p^{1/4} \log p.$$

Furthermore.

ヘロマ ヘロマ ヘロマ

In a conference in 1973, Norton made the following claim without proof:

Claim

$$H(p) \le 2.5p^{1/4} \log p \text{ for } p > e^{15} \approx 3.27 \times 10^6 \text{ and} \ H(p) < 4.1p^{1/4} \log p \text{ for all odd } p.$$

I was able to prove the claim (and a little more), improving on the theorem of McGown.

イロト イポト イヨト イヨト

Main Theorem

Theorem (T)

Let χ be a non-principal Dirichlet character to the prime modulus p. Let H(p) be the maximum number of consecutive integers for which χ is constant, then

$$H(p) < \left\{\frac{\pi}{2}\sqrt{\frac{e}{3}} + o(1)\right\}p^{1/4}\log p.$$

Furthermore,

$$H(p) \leq \left\{ egin{array}{ll} 3.64 p^{1/4} \log p, & \mbox{for all odd } p, \ & \ 1.55 p^{1/4} \log p, & \mbox{for } p \geq 2.5 \cdot 10^9. \end{array}
ight.$$

프 🕨 🗉 프

< □ > < 同 > < 三 > <

Main ingredient

The main ingredient in the proof comes from estimating

$$\mathcal{S}_{\chi}(h,w) = \sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w}.$$

- Burgess showed that $S_{\chi}(h,w) < (4w)^{w+1}ph^w + 2wp^{1/2}h^{2w}.$
- McGown improved it to $S_{\chi}(h, w) < \frac{1}{4} (4w)^w p h^w + (2w 1)p^{1/2} h^{2w}.$
- For quadratic characters, Booker showed $S_{\chi}(h,w) < \frac{(2w)!}{2^w w!} ph^w + (2w-1)p^{1/2}h^{2w}.$
- I showed that Booker's inequality holds for all characters.

ヘロン 人間 とくほ とくほ とう

Lower bound Lemma

Lemma

Let h and w be positive integers. Let χ be a non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H] and such that

$$4h \leq H \leq \left(\frac{h}{2}\right)^{2/3} p^{1/3}.$$

Let X := H/h, then $X \ge 4$ and

$$\mathcal{S}_{\chi}(h,w)\geq \left(rac{3}{\pi^2}
ight)X^2h^{2w+1}g(X)=AH^2h^{2w-1}g(X),$$

where $A = \frac{3}{\pi^2}$, and

$$g(X) = 1 - \left(\frac{13}{12AX} + \frac{1}{4AX^2}\right)$$

イロン イボン イヨン イヨン

э

Laborious Proof of Lemma

Let *a* and *b* be integers satisfying $1 \le a \le \lfloor \frac{2H}{h} \rfloor$ and

$$\left|a\frac{N}{\rho}-b\right|\leq rac{1}{\left\lfloorrac{2H}{h}
ight
floor+1}\leq rac{h}{2H}$$

Now define I(q, t) to be the real interval:

$$I(q,t) := \left(\frac{N+pt}{q}, \frac{N+H+pt}{q}\right],$$

for integers $0 \le t < q \le X$ and gcd(at + b, q) = 1.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Given

$$I(q,t) := \left(rac{N+pt}{q}, rac{N+H+pt}{q}
ight],$$

we have

• χ is constant inside the interval I(q, t) since if $m \in I(q, t)$, then

$$\chi(q)\chi(m) = \chi(qm) = \chi(qm - pt) = \chi(N + i),$$

where $i \in (0, H]$.

• The *I*(*q*, *t*) are disjoint (for this you need to use the restriction on *H* and on *a*).

•
$$I(q, t) \subset (0, p)$$
.

イロト イポト イヨト イヨト

Since the I(q, t) are disjoint and they are contained in (0, p), we have

$$S_{\chi}(h,w) = \sum_{m=0}^{p-1} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} \ge \sum_{q,t} \sum_{m \in I(q,t)} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w}$$
$$\ge h^{2w} \sum_{q,t} \left(\frac{H}{q} - h \right) = h^{2w+1} \sum_{q \le X} \sum_{\substack{0 \le t < q \\ \gcd(at+b,q) = 1}} \left(\frac{X}{q} - 1 \right).$$

Recall that X = H/h. Evaluating this last sum yields our lemma. The main difference between the technique Burgess and McGown use is that they have X = H/(2h) and then they evaluate the last sum with 1 instead of $\left(\frac{X}{q} - 1\right)$.

ヘロン 人間 とくほ とくほ とう

Finishing the Proof of the Main Theorem

Combining the upper and lower bounds on S_χ(h, w) we have

$$AH^2h^{2w-1}g(X) \leq S_{\chi}(h,w) < \frac{(2w)!}{2^ww!}ph^w + (2w-1)p^{1/2}h^{2w}.$$

- Optimizing for *h* and *w* asymptotically, we find the asymptotic in our theorem and we also prove that $H(p) < 1.55p^{1/4} \log p$ for $p \ge 10^{64}$.
- Since H < (^h/₂)^{2/3} p^{1/3}, we have to juggle a bit and we find that we are constrained to p ≥ 2.5 × 10⁹.
- To cover the gaps between 2.5×10^9 and 10^{64} we pick specific *h*'s and *w*'s and check for intervals as depicted in the table on the following slide.

<ロン <回と < 注入 < 注入 < 注入 = 注

Table

W	h	р	W	h	p	W	h	p
6	26	[2.5 · 10 ⁹ , 10 ¹⁰]	6	28	[10 ¹⁰ , 4 · 10 ¹⁰]	7	28	[4 · 10 ¹⁰ , 10 ¹¹]
7	32	[10 ¹¹ , 10 ¹²]	7	37	[10 ¹² , 10 ¹³]	8	41	[10 ¹³ , 10 ¹⁴]
8	44	[10 ¹⁴ , 10 ¹⁵]	9	45	[10 ¹⁵ , 10 ¹⁶]	9	51	[10 ¹⁶ , 10 ¹⁷]
9	59	[10 ¹⁷ , 10 ¹⁸]	10	62	[10 ¹⁸ , 10 ¹⁹]	11	63	[10 ¹⁹ , 10 ²⁰]
11	71	[10 ²⁰ , 10 ²¹]	12	72	[10 ²¹ , 10 ²³]	13	79	[10 ²³ , 10 ²⁵]
15	82	[10 ²⁵ , 10 ²⁷]	15	96	[10 ²⁷ , 10 ²⁹]	17	97	[10 ²⁹ , 10 ³¹]
18	105	[10 ³¹ , 10 ³³]	18	119	[10 ³³ , 10 ³⁵]	19	127	[10 ³⁵ , 10 ³⁷]
20	135	[10 ³⁷ , 10 ³⁹]	20	149	[10 ³⁹ , 10 ⁴¹]	22	150	[10 ⁴¹ , 10 ⁴³]
23	158	[10 ⁴³ , 10 ⁴⁶]	25	166	[10 ⁴⁶ , 10 ⁴⁹]	27	174	[10 ⁴⁹ , 10 ⁵²]
29	183	[10 ⁵² , 10 ⁵⁵]	31	191	[10 ⁵⁵ , 10 ⁵⁸]	33	200	[10 ⁵⁸ , 10 ⁶²]
33	215	[10 ⁶² , 10 ⁶⁴]						

Table: As an example on how to read the table: when w = 10 and h = 62, then the constant 1.55 works for all $p \in [10^{18}, 10^{19}]$. It is also worth noting that the inequality $1.55p^{1/4} \log p < h^{2/3}p^{1/3}$ is also verified for each choice of w and h.

くロト (過) (目) (日)

ъ

To get a bound for all p we use the following theorem (established with elementary methods):

Theorem (Brauer)

$$H(p) < \sqrt{2p} + 2.$$

Using this, one can show that $H(p) < 3.64p^{1/4} \log p$ whenever $p < 3 \times 10^6$. Using the techniques from before one can show that for $p \ge 3 \times 10^6$, $H(p) < 3.64p^{1/4} \log p$. One of the obstacles preventing us from getting a lower number is the restriction $H < \left(\frac{h}{2}\right)^{2/3} p^{1/3}$.

イロト イポト イヨト イヨト 三日

Thank you!

Enrique Treviño JMM 2012

・ロト ・聞ト ・ヨト ・ヨト

₹ 990