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Squares

Consider the sequence

2,5,8,11,14,17,20,23,26,29, . . .

Can it contain any squares?

Every positive integer n falls in one of three categories:
n ≡ 0, 1 or 2 (mod 3).
If n ≡ 0 (mod 3), then n2 ≡ 02 = 0 (mod 3).
If n ≡ 1 (mod 3), then n2 ≡ 12 = 1 (mod 3).
If n ≡ 2 (mod 3), then n2 ≡ 22 = 4 ≡ 1 (mod 3).
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Quadratic Residues and non-residues

Let n be a positive integer. For q ∈ {0,1,2, . . . ,n− 1}, we call q
a quadratic residue modn if there exists an integer x such that
x2 ≡ q (mod n). Otherwise we call q a quadratic non-residue.

For n = 3, the quadratic residues are {0,1} and the
non-residue is 2.
For n = 5, the quadratic residues are {0,1,4} and the
non-residues are {2,3}.
For n = 7, the quadratic residues are {0,1,2,4} and the
non-residues are {3,5,6}.
For n = p, an odd prime, there are p+1

2 quadratic residues
and p−1

2 non-residues.
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Least non-residue

How big can the least non-residue be?

p Least non-residue
3 2
7 3

23 5
71 7

311 11
479 13

1559 17
5711 19
10559 23
18191 29
31391 31

366791 37
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Heuristics

Let g(p) be the least quadratic non-residue modp. Let pi be
the i-th prime, i.e, p1 = 2,p2 = 3, . . . .

#{p ≤ x |g(p) = 2} ≈ π(x)
2 .

#{p ≤ x |g(p) = 3} ≈ π(x)
4 .

#{p ≤ x |g(p) = pk} ≈ π(x)
2k .

If k = logπ(x)/ log 2 you would expect only one prime
satisfying g(p) = pk .
Then we want k ≈ C log x , and since pk ∼ k log k we have
g(x) ≈ C log x log log x .
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Theorems on the least quadratic non-residue modp

Let g(p) be the least quadratic non-residue modp. Our
conjecture is

g(p) = O(log p log log p).

Under GRH, Bach showed g(p) ≤ 2 log2 p.

Unconditionally, Burgess showed g(p)�ε p
1

4
√

e
+ε.

1
4
√

e ≈ 0.151633.

In the lower bound direction, Graham and Ringrose proved
that there are infinitely many p satisfying
g(p)� log p log log log p, that is

g(p) = Ω(log p log log log p).
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History

The first breakthrough came in 1914 with some clever ideas
from I.M. Vinogradov. Consider the function χ where χ(a) is 1 if
a is a nonzero quadratic residue mod p, −1 if its a non-residue
and 0 for a = 0. χ is then a primitive Dirichlet character mod p.

Vinogradov noted that if
∑

1≤a≤n

χ(a) < n, then g(p) ≤ n.

He then proved
∑

1≤a≤n

χ(a) <
√

p log p, which shows that

g(p) ≤ √p log p.
Then using that χ(ab) = χ(a)χ(b) he was able to improve

this to show the asymptotic inequality g(p)� p
1

2
√

e
+ε.
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It took almost 50 years before the next breakthrough. It came
from the following theorem of Burgess:

Theorem (Burgess, 1962)
Let χ be a primitive character mod q, where q > 1, r is a
positive integer and ε > 0 is a real number. Then

|Sχ(M,N)| =

∣∣∣∣∣∣
∑

M<n≤M+N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

for r = 1,2,3 and for any r ≥ 1 if q is cubefree, the implied
constant depending only on ε and r .
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Consider ∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣ .
By Burgess ∣∣∣∣∣∣

∑
n≤N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

.

However, if χ(n) = 1 for all n ≤ N, then

N ≤

∣∣∣∣∣∣
∑
n≤N

χ(n)

∣∣∣∣∣∣� N1− 1
r q

r+1
4r2 +ε

,

so
N

1
r � q

r+1
4r2 +ε

.

Hence
N � q

1
4+

1
4r +εr .
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Explicit estimates on the least k -th power non-residue

Let p > 3 be a prime. Let gk (p) be the least k -th power
non-residue modp.
Norton showed in the late 60’s that

gk (p) ≤

 4.7p1/4 log p if k = 2 and p ≡ 3 (mod 4),

3.9p1/4 log p otherwise.

Theorem (ET 2012)

gk (p) ≤

 1.1p1/4 log p if k = 2 and p ≡ 3 (mod 4),

0.9p1/4 log p otherwise.
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Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)
Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be
non-negative integers with N ≥ 1 and let r ≥ 2, then

|Sχ(M,N)| ≤ 30 · N1− 1
r p

r+1
4r2 (log p)

1
r .

Theorem (ET, 2012)
Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M
and N be non-negative integers with N ≥ 1 and let r be a positive integer.
Then for p ≥ 107, we have

|Sχ(M,N)| ≤ 2.71N1− 1
r p

r+1
4r2 (log p)

1
r .

Enrique Treviño The Burgess inequality and the least k -th power non-residue



Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)
Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be
non-negative integers with N ≥ 1 and let r ≥ 2, then

|Sχ(M,N)| ≤ 30 · N1− 1
r p

r+1
4r2 (log p)

1
r .

Theorem (ET, 2012)
Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M
and N be non-negative integers with N ≥ 1 and let r be a positive integer.
Then for p ≥ 107, we have

|Sχ(M,N)| ≤ 2.71N1− 1
r p

r+1
4r2 (log p)

1
r .

Enrique Treviño The Burgess inequality and the least k -th power non-residue



A Corollary

Theorem (ET)

Let g(p) be the least quadratic nonresidue mod p. Let p be a
prime greater than 104685, then g(p) < p1/6.
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Other Applications of the Explicit Estimates

Booker computed the class number of a 32-digit
discriminant using an explicit estimate of a character sum.
McGown proved that there is no norm-Euclidean cubic field
with discriminant > 10140.
Levin and Pomerance proved a conjecture of Brizolis that
for every prime p > 3 there is a primitive root g and an
integer x ∈ [1,p − 1] with logg x = x , that is, gx ≡ x
(mod p).
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Vinogradov’s Trick

Lemma

Let x ≥ 259 be a real number, and let y = x1/
√

e+δ for some δ > 0. Let χ be
a non-principal Dirichlet character mod p for some prime p. If χ(n) = 1 for all
n ≤ y, then∑

n≤x

χ(n) ≥ x
(

2 log (δ
√

e + 1)− 4
log2 x

− 1
log2 y

− 1
x
− 2

log x

)
.

Proof. ∑
n≤x

χ(n) =
∑
n≤x

1− 2
∑

y<q≤x
χ(q)=−1

∑
n≤ x

q

1,

where the sum ranges over q prime. Therefore we have∑
n≤x

χ(n) ≥ bxc − 2
∑

y<q≤x

⌊
x
q

⌋
≥ x − 1− 2x

∑
y<q≤x

1
q
− 2

∑
y<q≤x

1.
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Proof of Main Corollary

Let x ≥ 259 be a real number and let y = x
1√
e
+δ

= p1/6 for some
δ > 0. Assume that χ(n) = 1 for all n ≤ y . Now we have

2.71x1− 1
r p

r+1
4r2 (log p)

1
r ≥ x

(
2 log (δ

√
e + 1)− 4

log2 x
− 1

log2 y
− 1

x
− 2

log x

)
.

Now, letting x = p
1
4+

1
2r we get

2.71p
log log p
r log p − 1

4r2 ≥ 2 log (δ
√

e + 1)− 4
log2 x

− 1
log2 y

− 1
x
− 2

log x
. (1)

Picking r = 22, one finds that δ = 0.00458 . . .. For p ≥ 104685, the
right hand side of (1) is bigger than the left hand side.
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Thank you!
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