The primes that Euclid forgot

Enrique Treviño

joint work with Paul Pollack

AMS/MAA Joint Math Meetings January 16, 2014

There are infinitely many primes

Start with $q_1 = 2$. Supposing that q_j has been defined for $1 \le j \le k$, continue the sequence by choosing a prime q_{k+1} for which

$$q_{k+1} \mid 1 + \prod_{j=1}^k q_j.$$

Then 'at the end of the day', the list $q_1, q_2, q_3, ...$ is an infinite sequence of distinct prime numbers.

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_1 = 2$, then define recursively q_k to be the **smallest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take $q_1 = 2$, then define recursively q_k to be the **largest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- Booker's proof uses deep theorems from analytic number theory such as the Burgess inequality.

5 is not in the second Euclid-Mullin sequence

- Suppose 5 is in the Euclid-Mullin sequence.
- Therefore there exists n such that $5|q_n = 1 + q_1q_2 + \dots + q_{n-1}$ and with 5 being the largest prime divisor of q_n .
- Since $q_1 = 2$ and $q_2 = 3$, then $(q_n, 6) = 1$.
- Therefore $q_n = 5^{\alpha}$ for some $\alpha \ge 1$.
- Now $5^{\alpha} \equiv 1 \pmod{4}$ while $1 + q_1 q_2 \dots q_{n-1} \equiv 3 \pmod{4}$.
- Contradiction!

5 is not in the second Euclid-Mullin sequence

- Suppose 5 is in the Euclid-Mullin sequence.
- Therefore there exists n such that $5|q_n = 1 + q_1q_2 + \dots + q_{n-1}$ and with 5 being the largest prime divisor of q_n .
- Since $q_1 = 2$ and $q_2 = 3$, then $(q_n, 6) = 1$.
- Therefore $q_n = 5^{\alpha}$ for some $\alpha \ge 1$.
- Now $5^{\alpha} \equiv 1 \pmod{4}$ while $1 + q_1 q_2 \dots q_{n-1} \equiv 3 \pmod{4}$.
- Contradiction!

5 is not in the second Euclid-Mullin sequence

- Suppose 5 is in the Euclid-Mullin sequence.
- Therefore there exists n such that $5|q_n = 1 + q_1q_2 + \dots + q_{n-1}$ and with 5 being the largest prime divisor of q_n .
- Since $q_1 = 2$ and $q_2 = 3$, then $(q_n, 6) = 1$.
- Therefore $q_n = 5^{\alpha}$ for some $\alpha \ge 1$.
- Now $5^{\alpha} \equiv 1 \pmod{4}$ while $1 + q_1 q_2 \dots q_{n-1} \equiv 3 \pmod{4}$.
- Contradiction!

Squares

Consider the sequence

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Squares

Consider the sequence

Can it contain any squares?

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Squares and non-squares

Let n be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call q a square mod n if there exists an integer x such that $x^2 \equiv q \pmod{n}$. Otherwise we call q a non-square.

- For n = 3, the squares are $\{0, 1\}$ and the non-square is 2.
- For n = 5, the squares are $\{0, 1, 4\}$ and the non-squares are $\{2, 3\}$.
- For n = 7, the squares are $\{0, 1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$.
- For n = p, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.

Least non-square

How big can the least non-square be? Let g(p) be the least non-square modulo p.

p	Least non-square	
3	2	
5	2	
7	3	
11	2	
13	2	
17	3	
19	2	
23	5	
29	2	
31	3	

p	Least non-square
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
422231	37
701399	41
366791	43
3818929	47

Let g(p) be the least non-square mod p.

Theorem

$$g(p) \leq \sqrt{p} + 1$$
.

Proof.

Suppose g(p)=q with $q>\sqrt{p}+1$. Let k be the ceiling of p/q. Then p< kq< p+q, so $kq\equiv a \mod p$ for some 0< a< q, and therefore kq is a square modulo p. Since $q>\sqrt{p}+1$, then $p/q<\sqrt{p}$, so k is at most the ceiling of $\sqrt{p}<\sqrt{p}+1< q$. Therefore k is a square modulo p. But if k and kq are squares modulo p, then q is a square modulo p. Contradiction!

Consecutive squares or non-squares

Let H(p) be the largest string of consecutive nonzero squares or non-squares modulo p.

For example, with p = 7 we have that the nonzero squares are $\{1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$. Therefore H(7) = 2.

р	H(p)
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4
41	5

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}$.
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}$.
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}$.
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}$.
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \leq \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}$.
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let k be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2g(p) > 2\sqrt{p} \ge 4k^2g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_1, Q_2, \dots Q_r$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \ge 0$. Then there is another omitted prime smaller than

$$12^2 \left(\prod_{i=1}^r Q_i\right)^2.$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than

$$\frac{1}{4\sqrt{e}-1}=0.178734\ldots$$
, provided that 12^2 is also replaced by a possibly larger constant.

Proof Sketch

Let $X = 12^2 (\prod_{i=1}^r Q_i)^2$. Assume there is no prime missing from [2, X] besides Q_1, \ldots, Q_r . Let p be the prime in [2, X] that is last to appear in the sequence $\{q_i\}$.

Let n be such that $q_n = p$. Then $1 + q_1 \dots q_{n-1} = Q_1^{e_1} \dots Q_r^{e_r} p^e$. Let d be the smallest number satisfying the following conditions:

- (i) $d \equiv 1 \pmod{4}$,
- (ii) $d \equiv -1 \pmod{Q_1 \dots Q_r}$
- (iii) d and -1 are either both squares mod p or both non-squares mod p.
 - Using the Chinese Remainder Theorem and the bound on H(p) yields that d ≤ X.
 - Given the conditions on d and using that d ≤ X shows that d is both a square and a non-square mod
 - $1 + q_1 q_2 \dots q_{n-1}$. Contradiction!

Thank you!