Finding the four squares in Lagrange's Theorem

Enrique Treviño

joint work with Paul Pollack
Joint Math Meetings January 11, 2018

COLLEGE

Coauthors

Lagrange's Theorem

Theorem (Lagrange, 1770)

Every positive integer n can be written as a sum of four squares.

Questions:

- For a given n, how do we find these squares?
- How fast can we do it?

Main Result

Rabin and Shallit in 1986 presented three random algorithms with the following expected runtimes:
(1) $O\left((\log n)^{2}\right)$ (this one depends on ERH and was discovered by Rabin in 1977)
(2) $O\left((\log n)^{2} \log \log n\right)$
(3) $O\left((\log n)^{2}(\log \log n)^{2}\right)$

Theorem (Pollack-T)

There are two random algorithms with expected runtime

$$
O\left(\frac{(\log n)^{2}}{\log \log n}\right) .
$$

One algorithm is dependent on ERH and one is not.

Integral Quaternions

Let i, j, k satisfy $i^{2}=j^{2}=k^{2}=-1$ and $i j=k, j k=i, k i=j$. The Hurwitz integral quaternions are:

$$
\mathbb{H}:=\left\{\frac{1}{2}(a+b i+c j+d k): a, b, c, d \in \mathbb{Z}, a \equiv b \equiv c \equiv d \quad(\bmod 2)\right\}
$$

Let $\alpha=a+b i+c j+d k$, then the norm of α is $N \alpha=a^{2}+b^{2}+c^{2}+d^{2}$.

Lemma

n is a sum of four squares if and only if $n=N \alpha$ for some $\alpha \in \mathbb{H}$.

Reduction to norms

$$
\mathbb{H}:=\left\{\frac{1}{2}(a+b i+c j+d k): a, b, c, d \in \mathbb{Z}, a \equiv b \equiv c \equiv d \quad(\bmod 2)\right\}
$$

Lemma

n is a sum of four squares if and only if $n=N \alpha$ for some $\alpha \in \mathbb{H}$.

Proof.

- Suppose $a \equiv b \equiv c \equiv d \equiv 1 \bmod 2$.
- Choose $\epsilon_{a}, \epsilon_{b}, \epsilon_{c}, \epsilon_{d} \in\{ \pm 1\}$ so that

$$
\epsilon_{a} \equiv a, \quad \epsilon_{b} \equiv-b, \quad \epsilon_{c} \equiv-c, \quad \epsilon_{d} \equiv-d \quad(\bmod 4)
$$

- Let $\epsilon=\frac{1}{2}\left(\epsilon_{a}+\epsilon_{b} i+\epsilon_{c} j+\epsilon_{d} k\right)$
- Then $\beta=\alpha \epsilon=A+B i+C j+D k$ with $A, B, C, D \in \mathbb{Z}$ and $N \beta=N \alpha$.

Useful Lemma

Lemma

Let n be an odd positive integer. If $n \mid N(a+b i+c j+d k)$, where $\operatorname{gcd}(a, b, c, d)=1$, then any gcrd of n and $a+b i+c j+d k$ has norm n.

Note: Quaternions are not commutative, so you can have right greatest common divisors and left greatest common divisors.

Rabin Algorithm depending on ERH

(1) Reduce to the odd part:

- Write $n=2^{e} n^{\prime}$. Takes at most $O(\log n)$ steps.
- Suppose $X^{\prime 2}+Y^{\prime 2}+Z^{\prime 2}+W^{\prime 2}=n^{\prime}$, then

$$
(1+i)^{e}\left(X^{\prime}+Y^{\prime} i+Z^{\prime} j+W^{\prime} k\right)=X+Y i+Z j+W k .
$$

(2) Assume n is odd. Find prime $p<(2 n)^{5}$ such that $p \equiv-1(\bmod n)$ and $p \equiv 1(\bmod 4)$.

- Find A, B such that $p=A^{2}+B^{2}$.
- Then $n \mid p+1=A^{2}+B^{2}+1=N(A+B i+j)$.
(3) Compute $\operatorname{gcrd}(n, A+B i+j)$.

Why ERH is needed?

"Find prime $p<(2 n)^{5}$ such that $p \equiv-1(\bmod n)$ and $p \equiv 1(\bmod 4)$."

Under ERH, among all integers up to $(2 n)^{5}$ that are $\equiv-1(\bmod n)$ and $\equiv 1(\bmod 4)$, the proportion of primes is $\gg \frac{n}{\varphi(n)} \cdot \frac{1}{\log n} \gg \frac{1}{\log n}$. So we expect to hit a prime p in $O(\log n)$ trials.

Big Idea

The proportion of primes p such that $p \equiv-1(\bmod n), p \equiv 1(\bmod 4)$ smaller than $(2 n)^{5}$ is $\gg \frac{n}{\varphi(n)} \cdot \frac{1}{\log n} \gg \frac{1}{\log n}$

Exploit the variability in the ratios $\frac{n}{\varphi(n)}$.

Final Algorithm

(1) [Precomputation] Determine the primes not exceeding $\log n$ and compute their product M.
(2) [Random trials] Choose an odd number $k<n^{5}$ at random, and let

$$
p=M n k-1 .
$$

(Notice that $p \equiv 1(\bmod 4)$, since $2 \| M$ and n, k are odd.) For a randomly chosen $u \in[1, p-1]$, compute $s=u^{(p-1) / 4} \operatorname{Mod} p$ and test if $s^{2} \equiv-1(\bmod p)$. If so, continue to the next step.
Otherwise, restart this step.
(3) [Denouement] Compute $A+B i:=\operatorname{gcd}(s+i, p)$. Then compute $\operatorname{gcrd}(A+B i+j, n)$, normalized to have integer components. Write this gcrd as $X+Y i+Z j+W k$, and output that
$n=X^{2}+Y^{2}+Z^{2}+W^{2}$.

How does the non-ERH one work?

(0) Calculating sum of two scares for "small primes".

- Flag each number in $[1, \log n]$ as prime or composite using $O\left((\log n)^{3 / 2}\right)$ operations.
- Compute $X^{2}+Y^{2}$ for all pairs X, Y with $0 \leq X, Y \leq(\log n)^{1 / 2}$.
- Record, for $\ell=2$ and for the primes $\ell \leq \log n$ with $\ell \equiv 1(\bmod 4)$, integers X_{ℓ}, Y_{ℓ} with

$$
\ell=X_{\ell}^{2}+Y_{\ell}^{2}
$$

Continuation

(1) Select x, y at random from $[1, N]$ and compute

$$
r:=\left(-\left(x^{2}+y^{2}\right)\right) \operatorname{Mod} N .
$$

- There are $\gg N(\log \log n)^{1 / 2} / \log N$ integers in $[1, N]$ that have the form $r_{1} p$, where r_{1} is a product of primes $\ell \leq \log n$ with $\ell \equiv 1$ $(\bmod 4)$, and $p>\log n$ is a prime congruent to 1 modulo 4 not dividing N.
- The number of choices for x, y where r lands on one of the numbers $r_{1} p$ is

$$
\gg N^{2} \frac{\log \log n}{\log N} \gg N^{2} \frac{\log \log n}{\log n} .
$$

- Thus, we expect to have $r=r_{1} p$ within $O(\log n / \log \log n)$ trials.
(2) Having located $r=r_{1} p$, compute a two-squares representation of r_{1} :

$$
u^{2}+v^{2}=r_{1}, \quad \text { where } \quad u+v i:=\prod_{\ell^{v} \ell \| r_{1}}\left(X_{\ell}+Y_{\ell} i\right)^{v_{\ell}} .
$$

(3) Suppose we have written $p=U^{2}+V^{2}$, and let $z+w i=(u+v i)(U+V i)$. Then

$$
-\left(x^{2}+y^{2}\right) \equiv r=r_{1} p=z^{2}+w^{2} \quad(\bmod N)
$$

so that

$$
n|N| x^{2}+y^{2}+z^{2}+w^{2}
$$

(4) Compute $\operatorname{gcrd}(n, x+y i+z j+w k)$. BAM!

Thank you!

