Finding the four squares in Lagrange’s Theorem

Enrique Treviño

joint work with Paul Pollack

Joint Math Meetings
January 11, 2018
Coauthors

(a) Paul Pollack
Enrique Treviño (Lake Forest College)

Finding the four squares in Lagrange’s Theorem

Joint Math Meetings 2018
Lagrange’s Theorem

Theorem (Lagrange, 1770)

Every positive integer n can be written as a sum of four squares.

Questions:

- For a given n, how do we find these squares?
- How fast can we do it?
Main Result

Rabin and Shallit in 1986 presented three random algorithms with the following expected runtimes:

1. $O((\log n)^2)$ (this one depends on ERH and was discovered by Rabin in 1977)
2. $O((\log n)^2 \log \log n)$
3. $O((\log n)^2 (\log \log n)^2)$

Theorem (Pollack-T)

There are two random algorithms with expected runtime

$$O \left(\frac{(\log n)^2}{\log \log n} \right).$$

One algorithm is dependent on ERH and one is not.
Let i, j, k satisfy $i^2 = j^2 = k^2 = -1$ and $ij = k, jk = i, ki = j$. The Hurwitz integral quaternions are:

$$
\mathbb{H} := \left\{ \frac{1}{2}(a + bi + cj + dk) : a, b, c, d \in \mathbb{Z}, a \equiv b \equiv c \equiv d \pmod{2} \right\}.
$$

Let $\alpha = a + bi + cj + dk$, then the norm of α is $N\alpha = a^2 + b^2 + c^2 + d^2$.

Lemma

n is a sum of four squares if and only if $n = N\alpha$ for some $\alpha \in \mathbb{H}$.
Reduction to norms

\[H := \left\{ \frac{1}{2} (a + bi + cj + dk) : a, b, c, d \in \mathbb{Z}, a \equiv b \equiv c \equiv d \pmod{2} \right\}. \]

Lemma

\(n \) is a sum of four squares if and only if \(n = N\alpha \) for some \(\alpha \in H \).

Proof.

- Suppose \(a \equiv b \equiv c \equiv d \equiv 1 \mod{2} \).
- Choose \(\epsilon_a, \epsilon_b, \epsilon_c, \epsilon_d \in \{\pm 1\} \) so that
 \[\epsilon_a \equiv a, \quad \epsilon_b \equiv -b, \quad \epsilon_c \equiv -c, \quad \epsilon_d \equiv -d \pmod{4}. \]
- Let \(\epsilon = \frac{1}{2}(\epsilon_a + \epsilon_b i + \epsilon_c j + \epsilon_d k) \)
- Then \(\beta = \alpha\epsilon = A + Bi + Cj + Dk \) with \(A, B, C, D \in \mathbb{Z} \) and \(N\beta = N\alpha \).
Lemma

Let n be an odd positive integer. If $n \mid N(a + bi + cj + dk)$, where $\gcd(a, b, c, d) = 1$, then any gcrd of n and $a + bi + cj + dk$ has norm n.

Note: Quaternions are not commutative, so you can have right greatest common divisors and left greatest common divisors.
Rabin Algorithm depending on ERH

1. Reduce to the odd part:
 - Write $n = 2^e n'$. Takes at most $O(\log n)$ steps.
 - Suppose $X'^2 + Y'^2 + Z'^2 + W'^2 = n'$, then
 $$(1 + i)^e(X' + Y'i + Z'j + W'k) = X + Yi + Zj + Wk.$$

2. Assume n is odd. **Find** prime $p < (2n)^5$ such that $p \equiv -1 \pmod{n}$ and $p \equiv 1 \pmod{4}$.
 - Find A, B such that $p = A^2 + B^2$.
 - Then $n|p + 1 = A^2 + B^2 + 1 = N(A + Bi + j)$.

3. Compute $\gcd(n, A + Bi + j)$.

Enrique Treviño (Lake Forest College)
Finding the four squares in Lagrange's Theorem
Joint Math Meetings 2018
“Find prime \(p < (2n)^5 \) such that \(p \equiv -1 \pmod{n} \) and \(p \equiv 1 \pmod{4} \).”

Under ERH, among all integers up to \((2n)^5 \) that are \(\equiv -1 \pmod{n} \) and \(\equiv 1 \pmod{4} \), the proportion of primes is \(\gg \frac{n}{\varphi(n)} \cdot \frac{1}{\log n} \gg \frac{1}{\log n} \). So we expect to hit a prime \(p \) in \(O(\log n) \) trials.
The proportion of primes p such that $p \equiv -1 \pmod{n}$, $p \equiv 1 \pmod{4}$ smaller than $(2n)^5$ is $\gg \frac{n}{\varphi(n)} \cdot \frac{1}{\log n} \gg \frac{1}{\log n}$

Exploit the variability in the ratios $\frac{n}{\varphi(n)}$.
(1) [Precomputation] Determine the primes not exceeding log n and compute their product M.

(2) [Random trials] Choose an odd number $k < n^5$ at random, and let $p = Mnk − 1$.

(Notice that $p \equiv 1 \pmod{4}$, since $2 \mid M$ and n, k are odd.) For a randomly chosen $u \in [1, p − 1]$, compute $s = u^{(p−1)/4} \mod p$ and test if $s^2 \equiv −1 \pmod{p}$. If so, continue to the next step. Otherwise, restart this step.

(3) [Denouement] Compute $A + Bi := \gcd(s + i, p)$. Then compute $\gcd(A + Bi + j, n)$, normalized to have integer components. Write this \gcd as $X + Yi + Zi + Wk$, and output that $n = X^2 + Y^2 + Z^2 + W^2$.
How does the non-ERH one work?

(0) Calculating sum of two scares for “small primes”.

- Flag each number in \([1, \log n]\) as prime or composite using \(O((\log n)^{3/2})\) operations.
- Compute \(X^2 + Y^2\) for all pairs \(X, Y\) with \(0 \leq X, Y \leq (\log n)^{1/2}\).
- Record, for \(\ell = 2\) and for the primes \(\ell \leq \log n\) with \(\ell \equiv 1 \pmod{4}\), integers \(X_\ell, Y_\ell\) with

\[
\ell = X_\ell^2 + Y_\ell^2.
\]
(1) Select \(x, y \) at random from \([1, N] \) and compute

\[
r := (- (x^2 + y^2)) \mod N.
\]

- There are \(\gg N (\log \log n)^{1/2} / \log N \) integers in \([1, N] \) that have the form \(r_1 p \), where \(r_1 \) is a product of primes \(\ell \leq \log n \) with \(\ell \equiv 1 \mod 4 \), and \(p > \log n \) is a prime congruent to 1 modulo 4 not dividing \(N \).
- The number of choices for \(x, y \) where \(r \) lands on one of the numbers \(r_1 p \) is

\[
\gg N^2 \log \log n / \log N \quad \gg N^2 \log \log n / \log n.
\]

- Thus, we expect to have \(r = r_1 p \) within \(O(\log n / \log \log n) \) trials.
(2) Having located \(r = r_1 \rho \), compute a two-squares representation of \(r_1 \):

\[
 u^2 + v^2 = r_1, \quad \text{where} \quad u + vi := \prod_{\ell^\nu_\ell \| r_1} (X_\ell + Y_\ell i)^{\nu_\ell}.
\]

(3) Suppose we have written \(p = U^2 + V^2 \), and let

\[
 z + wi = (u + vi)(U + Vi). \quad \text{Then}
\]

\[
 -(x^2 + y^2) \equiv r = r_1 \rho = z^2 + w^2 \quad (\text{mod } N),
\]

so that

\[
 n \mid N \mid x^2 + y^2 + z^2 + w^2.
\]

(4) Compute \(\text{gcd}(n, x + yi + zj + wk) \). BAM!
Thank you!