
 

 
 
 
 
 
 
 
 LAKE FOREST COLLEGE 
 
 Senior Thesis 
 
 
 
 Transcendental Numbers 
 
 
 
 by 
 
 
 
 Jacob Juillerat 
 
 
 April 25, 2016 
 
 
 

The report of the investigation undertaken as a 
Senior Thesis, to carry two courses of credit in 

the Department of Mathematics. 
 

 
 
 __________________________  _______________________ 
 Michael T. Orr   Enrique Treviño, Chairperson 
 Krebs Provost and Dean of the Faculty 
          

     _______________________ 
     DeJuran Richardson 
      
     _______________________  
     Michael M. Kash 
	
   	
   	
   	
   	
   	
   	
   	
   	
  



Abstract

The numbers e and π are transcendental numbers, meaning each of them are not

the root of any polynomial with rational coefficients. We prove that e and π are

transcendental numbers. The original proofs use the Fundamental Theorem of

Symmetric Polynomials and Stirling’s Formula, which we develop and prove. Since

π is not algebraic, neither is
√
π, which answers the ancient question of whether one

can square a circle. The proof that π is transcendental is a beautiful example of how

higher level mathematics can be used to answer ancient questions.
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1 Introduction

A number is algebraic over a field F , generally Q, if it is the root of some

polynomial with coefficients in F . We define a transcendental number to be a

number that is not algebraic, i.e. the root of no polynomial in Q.

The existence of transcendental numbers was proven before their was an example

of a transcendental number. In 1844, Joseph Louiville proved the existence of

transcendental numbers. In 1851, Louiville gave the first example of a

transcendental number [7]. He proved that α =
∞∑
k=0

10−k! is transcendental. From

this number we get the infinitude of the transcendental numbers. It can be shown

that if for each 1 in the decimal expansion of α we flip a coin and for heads we keep

the 1, and for tails we replace it with a zero, the resulting number is also

transcendental assuming we keep infinitely many ones. Since there are an infinite

number of 1’s in the decimal expansion of α, we get an infinite number of

transcendental numbers.

Charles Hermite was the first to prove the transcendence of a naturally occurring

number, e, in 1873. This inspired Ferdinand Lindemann to prove the transcendence

of π in 1882 using a similar method. His proof can be generalized to show eα is

transcendental when α is algebraic and nonzero. There are still many unsolved

problems when it comes to transcendental numbers. It is unknown if most

combinations of e and π are transcendental, such as eπ, e+ π, πe, etc [7].

In this paper, we will walk through the necessary steps to proving e and π are

transcendental. We will start by showing that e is irrational in section 2. In section

3 we will take a look at Stirling’s Formula, which will be used in later proofs.

Section 4 starts with Lemma 1, the basis of our contradictions for later proofs. We

will then prove that π is irrational in the same manner as the proofs for the

transcendence of e and π. We will prove that e is transcendental in section 5. In

section 6 we will finally prove that π is transcendental. To do this, we will start

with some definitions, move to the Fundamental Theorem of Symmetric

Polynomials and a relevant Corollary, then use all of it to prove that π is
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transcendental. We will then discuss a few applications in section 7.

2 Irrationality of e

The proof for the irrationality of e is quite simple compared to the proofs that

follow. It requires only an understanding of Taylor series expansions and some

simple algebra. This proof follows the observations given by Fourier in 1815, which

are reproduced in [1].

Theorem. The value e is irrational.

Proof: By way of contradiction, assume that e =
n
m with n,m ∈ Z and m 6= 0.

Consider taking the Taylor series expansion for e:

e =
n

m
= 1 +

1

1!
+

1

2!
+

1

3!
+ . . . =

∞∑
k=0

1

k!
.

We first show that e is not an integer. Taking the first two terms of the Taylor

expansion, we get 1+
1
1! < e, which is 2 < e. Also, we notice:

1 +
1

1!
+

1

2!
+

1

3!
+ . . . = 2 +

1

2!
+

1

3!
+ . . .

= 2 +
1

2

[
1 +

1

3
+

1

3 · 4
+ . . .

]

< 2 +
1

2

[
1 +

1

3
+

1

32
+ . . .

]

= 2 +
1

2

[
1

1− 1
3

]
= 2 +

3

4
< 3.

From this, we get the inequality 2 < e < 3, showing that e is not an integer;

therefore, m 6= 1. If we multiply the Taylor series expansion by m! we can break up

the sum as follows:

e(m!) = n(m− 1)! =
∞∑
k=0

m!

k!
=

m∑
k=0

m!

k!
+

∞∑
k=m+1

m!

k!
.
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The left hand side is now an integer, which means the right hand side must also be

an integer. The first term of the right hand side is clearly an integer since m ≥ k.

The second term takes some manipulation:

0 <
∞∑

k=m+1

m!

k!
=

1

m+ 1
+

1

(m+ 1)(m+ 2)
+

1

(m+ 1)(m+ 2)(m+ 3)
+ . . .

<
1

m+ 1
+

1

(m+ 1)(m+ 1)
+

1

(m+ 1)(m+ 1)(m+ 1)
+ . . .

=
1

m+ 1
+

1

(m+ 1)2
+

1

(m+ 1)3
+ . . . =

∞∑
k=1

(
1

m+ 1

)k

=
1

(m+ 1)

(
1

1− 1
m+1

)
=

1

m
< 1.

This makes the right hand side an integer plus a value between 0 and 1, which is

clearly not an integer; therefore, we have produced a contradiction. QED

3 Stirling’s Formula

The proofs for the transcendence of e and π require taking limits of factorials.

Originally stated by Abraham de Moivre in 1730, Stirling’s Formula allows us to

rewrite the factorials inside the limits making them easier to evaluate.

3.1 Wallis Formula

Stirling’s Formula requires the Wallis Formula, originally discovered in 1650 by

Englishman John Wallis. The derivation given, see [4], is a result of Euler’s proof

from 1734 for the Basel problem, or the sum of reciprocals of the squares.

Wallis Formula.

lim
n→∞

2 · 4 · · · (2n)

1 · 3 · 5 · · · (2n− 1)
√

2n
=

√
π

2
.

3



Proof: Consider
sinx

x
. We can factor this in a unique way by finding its roots. It

has roots x = ±nπ where n ∈ N. Therefore we get:

sinx

x
=
(

1− x

π

)(
1 +

x

π

)(
1− x

2π

)(
1 +

x

2π

)
· · ·

=

(
1− x2

π2

)(
1− x2

4π2

)(
1− x2

9π2

)
· · · .

Plugging in x = π
2

we get:

2

π
=

(
1− 1

4

)(
1− 1

16

)(
1− 1

36

)
· · ·

=

(
3

4

)(
15

16

)(
35

36

)
· · ·

=

(
1 · 3
2 · 2

)(
3 · 5
4 · 4

)(
5 · 7
6 · 6

)
· · ·

=
∞∏
k=1

(2k − 1)(2k + 1)

(2k)(2k)
.

Taking the reciprocal and rewriting it yields:

π

2
= lim

n→∞

2 · 2 · 4 · 4 · 6 · 6 · · · (2n)(2n)

1 · 3 · 3 · 5 · 5 · 7 · · · (2n− 1) · (2n+ 1)
.

If we take the square root we achieve the desired result since (2n+ 1) ∼ 2n for n

large:

lim
n→∞

2 · 4 · · · (2n)

1 · 3 · 5 · · · (2n− 1)
√

2n
=

√
π

2
.

QED

3.2 Stirling’s Formula

Stirling’s Formula is a very influential approximation. It allows us to evaluate

limits involving factorials, as well as approximate factorials of large numbers. This

is used extensively in other fields, such as thermodynamics.
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Stirling’s Formula. As n→∞, n! ∼ nne−n
√

2πn.

Proof: This proof follows that given by [3]. We want to show that

lim
n→∞

n!

nne−n
√

2πn
= 1. First, since the function log t is an increasing function for

t > 0, log t < log j for t ∈ (j − 1, j):∫ j

j−1
log t dt < log j

∫ j

j−1
1 dt = log j.

Likewise, log j < log t for t ∈ (j, j + 1), so:

log j = log j

∫ j+1

j

1 dt <

∫ j+1

j

log t dt.

Putting these two together yields:∫ j

j−1
log t dt < log j <

∫ j+1

j

log t dt.

Adding up these inequalities for j = 1, 2, . . . , n and using the properties of

logarithms and integrals, we get:∫ n

0

log t dt < log n! <

∫ n+1

1

log t dt.

While the first integral is improper, it converges to:

n log n− n < log n! < (n+ 1) log (n+ 1)− n.

We can rearrange the last expression where O(1) = (n+ 1)(log (n+ 1)− log n) to

get:

n log n− n < log n! < n log n− n+ log n+O(1).

Taking half the difference of the two sides of the inequality yields:

bn = n log n− n+
1

2
log n,

which is a good approximation of log n!. Define an as follows:

an = log n!− bn = log n!− (n log n− n+
1

2
log n).

Consider the difference:

an − an+1 =

(
n+

1

2

)
log

(
n+ 1

n

)
− 1 =

(
2n+ 1

2

)
log

(
n+ 1

n

)
− 1.
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Using simple algebraic manipulation, we write:

n+ 1

n
=

n+ 1

n

1− 1

2n+ 1

1− 1

2n+ 1

 =

n+ 1

n

(
2n

2n+ 1

)
1− 1

2n+ 1

=

(2n+ 1) + 1

2n+ 1

1− 1

2n+ 1

=
1 +

1

2n+ 1

1− 1

2n+ 1

.

Setting α =
1

2n+ 1
and doing a Taylor Expansion about zero yields:

1

2
log

(
n+ 1

n

)
=

1

2
log

(
1 + α

1− α

)
=

1

2
[log (1 + α)− log (1− α)]

=
1

2

[
∞∑
j=1

(−1)j+1

j
αj −

∞∑
j=1

(−1)2j+1

j
αj

]

=
1

2

∞∑
j=1

αj

j
[(−1)j+1 + 1] =

∞∑
j=1

α2j−1

2j − 1

= α +
1

3
α3 +

1

5
α5 + . . . .

Plugging this into our difference, we get:

an − an+1 =

(
2n+ 1

2

)
log

(
n+ 1

n

)
− 1

=

(
1

α

)(
1

2
log

(
1 + α

1− α

))
− 1

=
1

α

(
α +

1

3
α3 +

1

5
α5 + . . .

)
− 1

=

(
1 +

1

3
α2 +

1

5
α4 + . . .

)
− 1 =

1

3
α2 +

1

5
α4 + . . . .
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Since α > 0 for all n, this shows that the difference an − an+1 is also greater than

zero for all n. Continuing with this expansion of the difference:

0 < an − an+1 =
1

3
α2 +

1

5
α4 + . . . <

1

3
(α2 + α4 + . . . )

=
α2

3(1− α2)
=

1

3

(
1

α2
− 1

) =
1

3((2n+ 1)2 − 1)
=

1

12n(n+ 1)
.

This shows that the sequence an is decreasing, and since the difference approaches

zero as n→∞, the sequence converges to some number c. Therefore:

lim
n→∞

ean = lim
n→∞

n!en

nn
√
n

= ec,

and hence:

lim
n→∞

n!en

ecnn
√
n

= 1.

Now we need to show ec =
√

2π, which was first done by James Stirling in 1730. To

do this, we use the Wallis formula for π:

lim
n→∞

2 · 4 · · · (2n)

1 · 3 · 5 · · · (2n− 1)
√

2n
=

√
π

2
.

Factoring out a 2 from every term in the numerator, the numerator becomes 2nn!.

The denominator is (2n)! divided by the numerator. Therefore the Wallis formula

for π can be rewritten as:

lim
n→∞

(2nn!)2

(2n)!

1√
2n

=

√
π

2
.

Since n! ∼ nn
√
ne−nec we get:

22n(n!)2

(2n)!

1√
2n
∼ 22n(nn

√
ne−nec)2

(2n)2n(
√

2n)e−2nec
1√
2n

=
ec

2
∼
√
π

2
.

Therefore:

ec ∼
√

2π.

QED
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3.3 Bounds for Stirling’s Formula

When using Stirling’s Formula it is sometimes necessary to consider the bounds

of the approximation. In particular, we use the lower bound to help with the limits

in the next few sections. With some simple manipulation we can determine bounds

for our approximation:

0 < an − an+1 <
1

12n(n+ 1)
=

1

12

(
1

n
− 1

n+ 1

)
.

Using the fact that this is a telescoping sequence:

0 < an − an+1 <
1

12

(
1

n
− 1

n+ 1

)
an+1 − an+2 <

1

12

(
1

n+ 1
− 1

n+ 2

)
an+2 − an+3 <

1

12

(
1

n+ 2
− 1

n+ 3

)
. . .

an+k−1 − an+k <
1

12

(
1

n+ k − 1
− 1

n+ k

)
.

Adding these up we get:

0 < an − an+k <
1

12

(
1

n
− 1

n+ k

)
.

Let k →∞ and since an converges to c:

0 < an − c <
1

12n
.

Take the anti-logarithm of this inequality and we get our bounds:

1 ≤ n!

e−nnn
√

2πn
≤ e

1
12n .

4 Irrationality of π

The proof for the irrationality of π is done by way of contradiction. Using the

rational number acquired from the initial assumption, we construct a polynomial

that maps integers to integers. We show that this function is never zero, but

converges to zero, giving us a contradiction by violating Lemma 1.
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4.1 Lemma 1

This Lemma is the basis for the proofs for the irrationality of π, as well as the

transcendence of π and e. It is a direct consequence from the epsilon-delta definition

of limits.

Lemma 1. Let f : Z→ Z be a function such that f(n)→ 0 as n→∞. Then there

exists an N ∈ Z such that f(n) = 0 for all n ≥ N .

Proof: Since f(n)→ 0 as n→∞, there exists an N ∈ Z such that | f(n)− 0 |< ε

for all n ≥ N . Let ε = 1
2

then | f(n)− 0 |< 1
2

meaning f(n) = 0 for all n ≥ N since

f(n) is an integer. QED

4.2 The Irrationality of π

This proof follows Ivan Niven’s “simple” proof from 1947 [6]. There are many

ways to prove that π is irrational, but this proof follows the same outline for proving

the transcendence of e and π. It is important to note that the proof for the

transcendence of e came before Niven’s proof for the irrationality of π. For the

purpose of this paper, since proving π is irrational is easier, we look at it first.

Theorem. The value π is irrational.

Proof: By way of contradiction, assume that π = a
b

with a, b ∈ Z and b 6= 0. Define:

f(x) =
xn(a− bx)n

n!
, (1)

F (x) = f(x)− f (2)(x) + . . . =
∞∑
i=0

(−1)i f (2i)(x). (2)

Equation (1) has degree 2n, so equation (2) can be written as a sum to n instead of

infinity. Consider:

d

dx
[F ′(x) sin(x)− F (x) cos(x)]

= F ′′(x) sin(x) + F ′(x) cos(x)− F ′(x) cos(x) + F (x) sin(x)

= [F ′′(x) + F (x)] sin(x) = f(x) sin(x).
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Integrating both sides, using the Fundamental Theorem of Calculus, we get:∫ π

0

f(x) sin(x) dx = [F ′(x) sin(x)− F (x) cos(x)]
∣∣∣π
0

= F (π) + F (0).

Claim. F (π) + F (0) is a non-negative integer.

Proof: First look at F (0). Consider expanding f(x) as a polynomial. Let the

coefficient of xk be
ck
n! . Since a, b ∈ Z, so is ck. Consider f (k)(0). Since the degree of

each term of the polynomial is at least n, f (k)(0) = 0 for k < n. For n ≤ k ≤ 2n, the

coefficient of x0, i.e. the coefficient of xk differentiated k times, is
ck
n!k! because we

differentiated the original term k times; therefore, f (k)(0) =
ck
n!k! for n ≤ k ≤ 2n

must be an integer. So F (0) =
n∑
i=0

(−1)i f (2i)(0) is an integer.

Next consider F (π).

f(π − x) =

(
a
b
− x
)n (

a− b
(
a
b
− x
))n

n!
=

(
a
b
− x
)n

(a− (a− bx))n

n!

=

(
a
b
− x
)n

(bx)n

n!
=

(a− bx)nxn

n!

= f(x).

Differentiate both sides k times, we get:

(−1)kf (k)(π − x) = f (k)(x).

Plugging in zero for x:

(−1)kf (k)(π) = f (k)(0).

Thus, f (k)(π) is also an integer. So F (π) =
n∑
i=0

(−1)i f (2i)(π) is an integer.

Therefore, F (0) + F (π) ∈ Z.

QED (Claim)

For 0 < x < π, sin(x) > 0 and f(x) > 0. This implies:

0 <

∫ π

0

f(x) sin(x) dx = F (0) + F (π) ∈ Z. (3)
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Lets find the x value that achieves the maximum value for f(x) by setting f ′(x) = 0:

f ′(x) =
nxn−1(a− bx)n

n!
− bnxn(a− bx)n−1

n!
= 0

xn−1(a− bx)n = bxn(a− bx)n−1

a− bx = bx.

The maximum value for f(x) is achieved when x =
π
2 . From this we get the

inequality:

0 < f(x) ≤
(aπ

4

)n 1

n!
.

Plugging this into our integral we acquire the inequality:

0 <

∫ π

0

f(x) sin(x) dx ≤
∫ π

0

(aπ
4

)n 1

n!
dx ≤ π

(aπ
4

)n 1

n!
.

Using Stirling’s Formula:

lim
n→∞

π
(aπ

4

)n 1

n!
≤ lim

n→∞
π
(aπ

4

)n en

nn
√

2πn

= lim
n→∞

π√
2πn

(aπe
4n

)n
= 0.

By the Squeeze Theorem,

∫ π

0

f(x) sin(x) dx converges to zero; therefore, we have

constructed a function that maps integers to integers, and converges to zero. By (3),

this function never equals zero, which contradicts Lemma 1. Therefore, the

assumption that π ∈ Q is false. QED

5 The Transcendence of e

The proof for the transcendence of e is done by way of contradiction similar to

the proof for the irrationality of π. Using the polynomial acquired from the

assumption we made hoping to get a contradiction, we construct a new polynomial

that maps integers to integers. We show that this function is never zero, but

converges to zero, giving us a contradiction by violating Lemma 1.
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Theorem. The value e is transcendental.

Proof: By way of contradiction, assume e is not transcendental. This means e

satisfies the equation:

m∑
j=0

aje
j = ame

m + . . . + a1e+ a0 = 0, (4)

for aj ∈ Q for all j, some m ∈ N, and a0 6= 0. We can multiply by a suitable integer

to make aj ∈ Z for all j. Consider:

f(x) =
xp−1(x− 1)p(x− 2)p . . . (x−m)p

(p− 1)!
, (5)

with p a prime number. Notice that f(x) is a polynomial of degree mp+ p− 1. Also

consider:

F (x) =

mp+p−1∑
i=0

f (i)(x) = f(x) + f (1)(x) + . . . + f (mp+p−1)(x). (6)

Multiply (6) by e−x and differentiate with respect to x:

d

dx
[e−xF (x)] = e−xF ′(x)− e−xF (x) = e−x[F ′(x)− F (x)]

= e−x[−f(x) + f (mp+p)(x)] = −e−xf(x).

If we integrate from zero to j and multiply by aj for all j we get:

aj

∫ j

0

e−xf(x) dx = −aj[e−xF (x)]
∣∣∣j
0

= aj
[
−e−jF (j) + e0F (0)

]
= ajF (0)−aje−jF (j).

Multiplying by ej and summing over j gives us:

m∑
j=0

aje
j

∫ j

0

e−xf(x) dx =
m∑
j=0

[
aje

jF (0)− ajF (j)
]

= F (0)
m∑
j=0

aje
j −

m∑
j=0

F (j)aj.

By the initial assumption (4) and since F (j) =

mp+p−1∑
i=0

f (i)(j):

m∑
j=0

aje
j

∫ j

0

e−xf(x)dx = −
m∑
j=0

mp+p−1∑
i=0

ajf
(i)(j). (7)

Claim. Equation (7) is not zero for large enough p.
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Proof: We consider two cases.

Case 1: For j 6= 0 we will show f (i)(j) ∈ Z and is divisible by p. The only

nonzero terms arise when the term (x− j)p is differentiated exactly p times. For

anything less than p derivatives, a power of (x− j) survives, making the expression

zero. Differentiating this term p times gets p!
(p−1)! = p times

xp−1(x− 1)p(x− 2)p · · · (x− (j − 1))p(x− (j + 1))p · · · (x−m)p. When we take more

derivatives, we use the product rule on this extra term. Since the extra term is just

integers raised to an integer power, it will remain an integer; thus, we acquire

p

(
l∑

k=0

bk

)
for some l, bk ∈ N. This is pk1 for some k1 ∈ Z.

Case 2: For j = 0 we have to differentiate xp−1, (p− 1) times in order for

f (i)(0) 6= 0. This first happens when i = (p− 1), which then gives us a (p− 1)! in the

numerator canceling out the denominator. Therefore for i = (p− 1),

a0f
(p−1)(0) = a0(x− 1)p(x− 2)p · · · (x−m)p|x=0 = a0(−1)p(−2)p · · · (−1)p.

For i > (p− 1) in order for f (i)(0) 6= 0 we must use (p− 1) derivatives as above.

When we differentiate the middle expression again, a p will be brought down,

making the expression a multiple of p. Overall, the j = 0 case results in

k2p+ a0(−1)p · · · (−m)p for some k2 ∈ Z.

Putting the three cases together, equation (7) becomes Kp+ a0(−1)p · · · (−m)p

with K = k1 + k2. If p > max(m!, | a0 |), then p does not divide a0(−1)p · · · (−m)p

since p does not divide 1, 2, ...,m or a0, and p is prime. Therefore,

Kp+ a0(−1)p · · · (−m)p 6= 0 for p large enough.

QED (Claim)

Thus, for p large enough we have:

m∑
j=0

aje
j

∫ j

0

e−xf(x)dx = −Kp− a0(−1)p · · · (−m)p 6= 0.

However, if 0 ≤ x ≤ m:

| f(x) |≤ mp−1mp · · ·mp

(p− 1)!
=
mmp+p−1

(p− 1)!
.
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Using this and the fact that for x ≥ 0, |e−x| ≤ 1, we conclude:∣∣∣∣∣
m∑
j=0

aje
j

∫ j

0

e−xf(x)dx

∣∣∣∣∣ ≤
m∑
j=0

|ajej|
∫ j

0

|e−x||f(x)|dx

≤
m∑
j=0

|ajej|
∫ j

0

mmp+p−1

(p− 1)!
dx

=
m∑
j=0

|ajej| j
mmp+p−1

(p− 1)!
.

Claim. This expression approaches zero as p→∞.

Proof: By Stirling’s Approximation, since 1 ≤ p!

ppe−p
√

2πp
we get

1

p!
≤ 1

ppe−p
√

2πp
.

Therefore since m and p are both positive:

0 ≤ mmp+p−1

(p− 1)!
=
p mmp+p−1

p!

≤ p mmp+p−1

ppe−p
√

2πp
=

1√
2πp

epmmp+p−1

pp−1
=

1√
2πp

(
e mm+1− 1

p

p1−
1
p

)p

.

As p→∞, the expression in the parenthesis approaches zero since both e and m

are fixed. This makes the entire expression approach zero as p→∞.

QED (Claim)

Therefore, since equation (7) approaches zero as p→∞, and is a function that

maps Z→ Z, Lemma 1 states that there exists a prime P such that for all p ≥ P :∣∣∣∣∣
m∑
j=0

aje
j

∫ j

0

e−xf(x)dx

∣∣∣∣∣ = 0.

Contradicting the claim that equation (7) does not equal zero for large enough

p. QED

This proof follows Charles Hermite’s original proof from 1873, which is

reproduced in [7].
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6 The Transcendence of π

The proof for the transcendence of π is very analogous to that of e, except it

requires Galois Theory to set up the function of interest; therefore, we have a few

definitions to establish and theorems to prove.

6.1 Definitions

Definition: We can order the elements of a Cartesian product of any two sets A

and B using Lexicographic Order by (a1, b1) < (a2, b2) both in A×B if and only

if either:

1. a1 < a2, or

2. a1 = a2 and b1 < b2.

This can be extended to a Cartesian product of an arbitrary number of sets. For

example, if x1 < x2 < · · · < xn then (x1, x2, ..., xn) < (x1, x2, ..., xi+1, xi, ..., xn) for

1 < i < n under the lexicographic ordering.

Definition: Let f =
∑

α aαx
α be a nonzero polynomial in K[x1, x2, ..., xn] where

xα = xα1
1 x

α2
2 · · · xαn

n for α = (α1, α2, ..., αn). K[x1, x2, ..., xn] is the ring of all

polynomials with variables x1, x2, ..., xn and coefficients in the field K. The

multidegree of f is multideg(f) = max(α : aα 6= 0) under lexicographic ordering.

For example, the polynomial f = 3x2y3 + 4x3y1 has multidegree (3, 1), written

multideg(f) = (3, 1).

Definition: The leading coefficient of f is LC(f) = amultideg(f) ∈ K. Likewise,

the leading monomial of f is LM(f) = xmultideg(f). Putting this together, the

leading term of f is LT(f) = LC(f) · LM(f). That is, the leading term is the

coefficient and variables of the term with the highest multidegree.

Definition: A polynomial f ∈ K[x1, x2, ..., xn] is symmetric if:

f(xτ(1), xτ(2), ..., xτ(n)) = f(x1, x2, ..., xn)

for all possible permutations xτ(1), xτ(2), ..., xτ(n) on the variables x1, x2, ..., xn. That

is, a polynomial is symmetric if relabeling the variables does not change the
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function itself. For example, consider f(x, y) = x2 + y2. Relabeling the function as

f(y, x) = y2 + x2 does not change the function, i.e. f(y, x) = f(x, y); therefore,

f(x, y) is a symmetric polynomial.

Definition: We define the elementary symmetric polynomials

σ0, σ1, ..., σn ∈ K[x1, x2, ..., xn] by:

σ0 = 1

σ1 = x1 + x2 + · · ·+ xn

σ2 = x1x2 + x1x3 + · · ·+ xn−1xn

· · ·

σn = x1x2 · · · xn

with each σj is a symmetric function. That is, σ1 is all the ways to choose 1 variable

from the n variables, σ2 is all the ways to choose 2 variables from the n variables,

and so on. These can be derived from the expansion of a function f about its roots

α1, α2, ..., αn :

f(x) =
n∏
i=1

(x− αi)

= xn(1)− xn−1(α1 + α2 + · · ·+ αn) + · · ·+ (−1)nx0(α1α2 · · · αn)

= xn(σ0)− xn−1(σ1) + · · ·+ (−1)nx0(σn)

=
n∑
j=0

(−1)jxn−jσj.

6.2 The Fundamental Theorem of Symmetric Polynomials

As with the proof for the transcendence of e, we will need to construct a

function, f(x), that will give us the contradiction needed. To do this, we will need

to show that certain derivatives of f(x) evaluated at various values are integers.

The easiest way to do this will be to look at the elementary symmetric polynomials

and using the Fundamental Theorem of Symmetric Polynomials.
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Theorem. (The Fundamental Theorem of Symmetric Polynomials). Every

symmetric polynomial in K[x1, x2, ..., xn] can be written uniquely as a polynomial in

the elementary symmetric polynomials σ1, σ2, ..., σn.

Proof: We will use a lexicographic ordering with x1 > x2 > · · · > xn. Let the

leading term of a nonzero symmetric polynomial f ∈ K[x1, x2, ..., xn], be LT(f) =

axα where xα = xα1
1 x

α2
2 · · · xαn

n . If α = (α1, α2, ..., αn), we claim that

α1 ≥ α2 ≥ · · · ≥ αn.

Proof of Claim: Suppose by way of contradiction that there exists some i such that

αi < αi+1. Let β = (α1, ..., αi+1, αi, ..., αn) i.e. let β be α with αi+1 and αi switched.

Notice that axα is a term of f , axβ is a term of f(..., xi+1, xi, ...). Since f is

symmetric, f(..., xi+1, xi, ...) = f , meaning that axβ is a term of f . Since β > α

under the lexicographic ordering, axβ is the leading term of f , a contradiction.

Therefore α1 ≥ α2 ≥ · · · ≥ αn.

QED (Claim)

Consider:

h = σα1−α2
1 σα2−α3

2 · · · σαn−1−αn

n−1 σαn
n .

The function h is symmetric since it is the product of symmetric polynomials,

namely the elementary symmetric polynomials. We will find the leading term of h.

To do this we note that LT(σr) = x1x2 · · · xr for 1 ≤ r ≤ n. Hence:

LT(h) = LT(σα1−α2
1 σα2−α3

2 · · · σαn
n )

= LT(σ1)
α1−α2LT(σ2)

α2−α3 · · · LT(σn)αn

= xα1−α2
1 (x1x2)

α2−α3 · · · (x1 · · · xn)αn

= xα1
1 x

α2
2 · · · xαn

n = xα.

From this we see that f and ah have the same leading term, thus:

multideg(f − ah) < multideg(f)

for f − ah 6= 0. Define f1 = f − ah. Since f and ah are symmetric, f1 is also

symmetric; therefore, we can repeat this process if f1 6= 0 to get f2 = f1 − a1h1,
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where a1 is a constant and h1 is some product of σ1, σ2, ..., σn to various powers.

When we do this, we will also get the same relationship:

multideg(f2) < multideg(f1).

This means LT(f2) < LT(f1) when f2 6= 0. We can continue this process to get a

sequence of polynomials f, f1, f2, ... with:

multideg(f) > multideg(f1) > multideg(f2) > · · · .

The multidegree must terminate since the multidegree decreases at each step. Since

f has at most n variables and the multidegree is a coordinate of non-negative

integers, the multidegree eventually falls to (0, 0, ..., 0) making it terminate. This

means ft+1 = 0 for some t. Combining all the f ’s, we get:

f = ah+ f1 = ah+ a1h1 + f2

= ah+ a1h1 + · · ·+ atht.

Finally, since each h is a product of elementary symmetric polynomials, f is a

polynomial in the elementary symmetric functions. We now need to prove

uniqueness. Suppose:

f = g1(σ1, σ2, ..., σn) = g2(σ1, σ2, ..., σn)

for f a symmetric polynomial with g1 and g2 its representations in the elementary

symmetric functions σ1, σ2, ..., σn. Here, g1 and g2 are polynomials in n variables, say

y1, y2, ..., yn, so they are both in K[y1, y2, ..., yn]. Let g = g1− g2. We first notice that

g(σ1, σ2, ..., σn) = 0 in K[x1, x2, ..., xn] since each σi is in K[x1, x2, ..., xn]. To prove

uniqueness, we need to show that g = 0 in K[y1, y2, ..., yn]. By way of contradiction,

suppose g(σ1, σ2, ..., σn) 6= 0. Let g =
∑

β aβy
β, that is let g(σ1, σ2, ..., σn) be the

sum of gβ = aβσ
β1
1 σ

β2
2 · · · σβnn such that β = (β1, β2, ..., βn). It follows that:

LT(gβ) = LT(aβσ
β1
1 σ

β2
2 · · · σβnn )

= aβLT(σ1)
β1LT(σ2)

β2 · · · LT(σn)βn

= aβx
β1
1 (x1x2)

β2 · · · (x1 · · · xn)βn

= aβx
β1+···+βn
1 xβ2+···+βn2 · · · xβnn .
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At the same time, we know that LT(gβ) = aβσ
β1
1 σ

β2
2 · · · σβnn in K[σ1, σ2, ..., σn]. The

leading term is unique, so these must be equal; therefore, there must be a map:

(β1, ..., βn) 7→ (β1 + · · ·+ βn, β2 + · · ·+ βn, · · ·, βn).

We need to show this mapping is injective. Suppose

(β1 + · · ·+ βn, β2 + · · ·+ βn, · · ·, βn) = (γ1 + · · ·+ γn, γ2 + · · ·+ γn, · · ·, γn), we need

to show (β1, ..., βn) = (γ1, ..., γn). Working backwards, it is clear that βn = γn.

Looking at the next term βn−1 + βn = γn−1 + γn, using the previous relation, we get

βn−1 = γn−1. Continuing this we get all the way down to β1 = γ1. Putting it all

together yields the desired result (β1, ..., βn) = (γ1, ..., γn).

Since this map is injective, the gβ’s have distinct leading terms. Consider

choosing a β such that LT(gβ) > LT(gγ) for all γ 6= β. By the definition of the

leading term, LT(gβ) is greater than all of the terms of the gγ’s. This means nothing

cancels the LT(gβ), and since g is the sum of the gβ’s, g(σ1, σ2, ..., σn) cannot be zero

in K[x1, x2, ..., xn]. This provides the contradiction, meaning this representation in

the elementary symmetric polynomials is unique. QED

This proof, see [2], was given by Gauss to help provide a second proof of the

Fundamental Theorem of Algebra in 1816. The proof gives rise to an algorithm for

writing a symmetric polynomial in terms of the elementary symmetric polynomials

σ1, σ2, ..., σn.

Example: Consider the function:

f = x2y + x2z + xy2 + xz2 + y2z + yz2 ∈ K[x, y, z].

Using the algorithm used in the above proof, we can write f in terms of the

elementary symmetric polynomials. We start by eliminating the leading term of f ,

LT(f) = x2y = LT(σ2σ1), which gives:

f1 = f − σ2σ1 = −3xyz.

The leading term is now the only term −3xyz = −3LT(σ3), which gives:

f2 = f1 + 3σ3 = 0.
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Working backwards we get f in terms of the elementary symmetric polynomials:

f = σ2σ1 + f1 = σ2σ1 − 3σ3.

6.3 Corollary 1

This theorem gives rise to a Corollary, which will be used in the proof of the

transcendence of π.

Corollary 1. Consider a polynomial f(x) in F . Let F ⊆ K be a field extension

containing the roots of f(x), α1, α2, ..., αn. If g(α1, α2, ..., αn) ∈ K is symmetric,

then g(α1, α2, ..., αn) ∈ F .

Proof: By assumption, we can write f(x) ∈ K[x] as:

f(x) = (x− α1)(x− α2) · · · (x− αn).

Using the definition of the elementary symmetric polynomials σ0, σ1, σ2..., σn :

f(x) =
n∏
i=1

(x− αi) =
n∑
j=0

(−1)jσjx
n−j

where σ1, σ2..., σn is evaluated at (α1, α2, ..., αn) and σ0 = 1. Since f(x) ∈ F [x], its

coefficients are in F , meaning the elementary symmetric polynomials evaluated at

(α1, α2, ..., αn) are in F . Let g ∈ F [x1, x2, ..., xn] be a symmetric polynomial. By the

Fundamental Theorem of Symmetric Polynomials, we can write g in terms of

σ1, σ2, ..., σn with coefficients in F . Therefore, evaluating g at (α1, α2, ..., αn) gets us

g ∈ F . QED

6.4 The Proof for the Transcendence of π

Theorem. The value π is transcendental.

Proof: By way of contradiction, let π be the root of some nonzero polynomial over

Q. Since i is algebraic, then so is iπ. Let θ1(x) ∈ Q[x] be a polynomial with zeros

α1 = iπ, α2, α3, ..., αn. Since eiπ + 1 = 0, we know:

(eα1 + 1) (eα2 + 1) · · · (eαn + 1) = 0. (8)
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Imagine multiplying this out, we would get:

eγ1 + eγ2 + · · ·+ eγh = 0,

where γi is some linear combination of the αj’s. Since there is at least one γj = 0,

achieved by multiplying all the ones together, we can rewrite this as:

eγ1 + eγ2 + · · ·+ eγr + k = 0, (9)

where k ∈ N. We now construct a polynomial whose zeros are γ1, γ2, ..., γh. For

example, consider the terms of the form:

eαseαt · 1 · · · 1.

These lead to exponents of the form αs + αt. Multiplying (8) out would result in

all such combinations of two α’s: α1 + α2, ..., αn−1 + αn. Let all these combinations

of two α’s be the roots of a polynomial θ2(x). This means we can write:

θ2(x) =
∏

1≤i<j≤n

(x− (αi + αj)).

Since we get all combinations of two α’s, θ2(x) is symmetric in α1, α2, ..., αn. By the

Fundamental Theorem of Symmetric Polynomials, θ2(x) can be expressed in terms

of the elementary symmetric polynomials in α1, α2, ..., αn. Since the α’s are zeros of

θ1(x), which is in Q[x], their elementary symmetric polynomials can be written in

terms of the coefficients of θ1(x) as seen in the definition of elementary symmetric

polynomials. This means the elementary symmetric polynomials are in

Q[α1, α2, ..., αn]. Therefore, by expressing θ2(x) in terms of the elementary

symmetric polynomials, θ2(x) must also have rational coefficients.

By the same argument, the sums of k αj’s satisfy the polynomial θk(x) = 0 ∈ Q[x]

for 2 ≤ k ≤ n. Using this, θ1(x)θ2(x) · · · θk(x) is a polynomial over the rationals

with zeros γ1, γ2, ..., γh. Since there is at least one γj = 0, we can divide by some

power of x and multiply by a suitable integer to get a polynomial θ(x) ∈ Z[x] with

nonzero roots γ1, γ2, ..., γr with r < h. We can write θ(x) as a polynomial:

θ(x) = cxr + c1x
r−1 + · · ·+ cr
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where cr is not zero since zero is not a root of θ(x). Define:

f(x) =
csxp−1[θ(x)]p

(p− 1)!

with s = rp− 1 and p a prime. Notice that f(x) has degree rp+ p− 1 = s+ p.

Define another function:

F (x) = f(x) + f ′(x) + · · ·+ f (s+p)(x).

As with the proof for e transcendental:

d

dx

[
e−xF (x)

]
= e−x [F ′(x)− F (x)] = −e−xf(x).

Integrate from zero to x, changing the dummy variable to y:∫ x

0

d

dy

[
e−yF (y)

]
dy = e−yF (y)

∣∣∣x
0

= e−xF (x)− F (0)

= −
∫ x

0

e−yf(y)dy.

Making the substitution y = λx and multiplying by ex to clean things up yields:

F (x)− exF (0) = −x
∫ 1

0

f(λx)ex(1−λ)dλ.

Summing over x ranging from γ1, γ2, ..., γr acquires:

r∑
j=1

F (γj)− F (0)
r∑
j=1

eγj = −
r∑
j=1

γj

∫ 1

0

f(λγj)e
γj(1−λ)dλ.

Using equation (9) gives us the expression of interest:

r∑
j=1

F (γj) + kF (0) = −
r∑
j=1

γj

∫ 1

0

f(λγj)e
γj(1−λ)dλ. (10)

Claim. The left hand side of equation (10) is a nonzero integer for large p.

Proof. We first deal with F (0). We consider three cases.

Case 1: For t < p− 1, f (t)(0) = 0 since the xp−1 term must survive.

Case 2: For t = p− 1, the only term that is nonzero is the term that

differentiates xp−1 exactly p− 1 times. All other terms arising from the product rule

have a power of x, and are thus zero. Therefore f (p−1)(0) = csθ(0)p

(p−1)! (p− 1)! where

θ(0) = cr, yielding f (p−1)(0) = cscpr.
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Case 3: For t > p− 1, again the only terms that will be nonzero are those that

differentiate xp−1 exactly p− 1 times. The other derivatives go to [θ(x)]p. Since

θ(x) ∈ Z[x], differentiating [θ(x)]p n times pulls a p down, and results in a new

function still with integer coefficients. Evaluating it at zero yields p times an integer

l. Therefore, due to the product rule, f (t)(0) creates an integer number of these

terms all multiplied with cs ∈ Z. Adding all these terms together, and lumping all

the integers into one produces f (t)(0) = plt for some lt ∈ Z.

We now consider
r∑
j=1

F (γj) =
r∑
j=1

s+p∑
t=0

f (t)(γj), this time with two cases.

Case 1: For 0 ≤ t < p, a power of θ(x) will survive in each term. Since γj is a

zero of θ(x) by construction,
r∑
j=1

F (γj) = 0.

Case 2: For t ≥ p, we must differentiate [θ(x)]p p times to eliminate the θ(x)

since γj is a root of θ(x). Differentiating in this way pulls a p! down, canceling the

(p− 1)! in the denominator resulting in a factor of p. Notice that
r∑
j=1

f (t)(γj) is a

symmetric polynomial in γ1, γ2, ..., γr since
r∑
j=1

f (t)(γj) is some polynomial evaluated

at each γj. Using Corollary 1, since f(x) ∈ Z with roots γ1, γ2, ..., γr,
r∑
j=1

f (t)(γj) ∈ Z. As argued, it must also be a multiple of p. Hence,
r∑
j=1

F (γj) = pkt

for some kt ∈ Z.

Therefore the left hand side of equation (10) becomes:

pkt + kcscpr + kplt = mp+ kcscpr

for m ∈ Z. As discussed earlier k, c, and cr must be nonzero. Let

p > max (|k|, |c|, |cr|) , then mp+ kcscpr is not divisible by p and is therefore nonzero.

QED (Claim)

Now consider the right hand side of equation (10):

−
r∑
j=1

γj

∫ 1

0

cs(λγj)
p−1[θ(λγj)]

p

(p− 1)!
eγj(1−λ)dλ.

Each term of the finite sum can be made as small as desired by making p very large.
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Using Stirling’s Formula as in the proof for the transcendence of e,

∣∣∣∣cs(λγj)p−1[θ(λγj)]p(p− 1)!

∣∣∣∣ =

∣∣∣∣∣∣
(
cr−

1
p (λγj)

1− 1
p [θ(λγj)]

)p
(p− 1)!

∣∣∣∣∣∣ ≤
∣∣∣∣ qp

(p− 1)!

∣∣∣∣→ 0

for some constant q as p→∞. Therefore, the right hand side approaches zero as p

gets large. Putting it all together, equation (10) creates the usual contradiction

since it converges to zero for large p but is a nonzero integer for large p. QED

This proof follows Ferdinand Lindemann’s original proof from 1882, reproduced

in [7].

7 Applications

7.1 Constructibility

Definition: A real number x is constructible if we can create a line segment of

length x using a straightedge and compass in a finite number of steps given a

segment of unit length.

The ancient Greeks were intrigued by the notion of constructibility. They

proved many theorems about what numbers are constructible, but one theorem

eluded them. One of the unsolved problems of the ancient world was whether one

could square a circle. That is, given a circle, can we construct a square with the

same area. For a circle of radius 1, the area is π, and thus the sides of the square

would be
√
π. So this question reduces to whether we can construct

√
π.

Theorem. If α is constructible and not in Q, then [Q(α) : Q] = 2r for some r ≥ 0

an integer.

A proof for this theorem can be seen in Fraleigh’s A First Course in Abstract

Algebra [5]. This theorem states that for a number α to be constructible, the degree

of the irreducible polynomial in Q with root α must be a power of two. More

importantly, the degree must be finite. A transcendental number, by definition, is

the root of no polynomial in Q. This means its irreducible polynomial does not have
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finite degree, or degree equal to a power of two; therefore, transcendental numbers

are not constructible. By proving the transcendence of π, we also get that
√
π is

transcendental, and is not constructible; thus answering the ancient question: we

can not square a circle.

7.2 “Nice” Use of Galois Theory

As mathematicians we deal with highly complex and theoretical concepts. The

proof for the transcendence of π uses many of these complicated results of higher

level mathematics in an understandable way. It provides a nice application of Galois

Theory in the usage of the symmetric polynomials to construct the equation of

interest for proving π is transcendental. This helps mathematicians bring their

results back down to the real world.
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