Prime gaps: a breakthrough in number theory

Enrique Treviño

Faculty Discussion Group, September 16, 2014

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- How many even numbers does it have?
- It has 5.
- How many square numbers?
- It has 1
- How many prime numbers?
- It has 4.

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- How many even numbers does it have?
- It has 5 .
- How many square numbers?
- It has 1
- How many prime numbers?
- It has 4.

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- How many even numbers does it have?
- It has 5 .
- How many square numbers?
- It has 1 .
- How many prime numbers?
- It has 4.

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- How many even numbers does it have?
- It has 5 .
- How many square numbers?
- It has 1.
- How many prime numbers?
- It has 4.

Consider the sequence from 1001 to 2000:

- How many even numbers does it have?
- It has 500.
- How many square numbers?
- It has 13.
- How many prime numbers?
- It has 135.

Consider the sequence from 1001 to 2000:

- How many even numbers does it have?
- It has 500 .
- How many square numbers?
- It has 13.
- How many prime numbers?
- It has 135.

Consider the sequence from 1001 to 2000:

- How many even numbers does it have?
- It has 500 .
- How many square numbers?
- It has 13.
- How many prime numbers?

Consider the sequence from 1001 to 2000:

- How many even numbers does it have?
- It has 500.
- How many square numbers?
- It has 13 .
- How many prime numbers?
- It has 135.

Consider the sequence from 1000001 and 2000000:

- How many even numbers does it have?
- It has 500000 .
- How many square numbers?
- It has 414.
- How many prime numbers?
- It has 70435 .

Consider the sequence from 1000001 and 2000000:

- How many even numbers does it have?
- It has 500000.
- How many square numbers?
- It has 414.
- How many prime numbers?
- It has 70435.

Consider the sequence from 1000001 and 2000000:

- How many even numbers does it have?
- It has 500000.
- How many square numbers?
- It has 414.
- How many prime numbers?
- It has 70435.

Consider the sequence from 1000001 and 2000000:

- How many even numbers does it have?
- It has 500000.
- How many square numbers?
- It has 414.
- How many prime numbers?
- It has 70435.

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- This question is not applicable.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 4 and the smallest is 2

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- This question is not applicable.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 4 and the smallest is 2

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- This question is not applicable.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 4 and the smallest is 2

Introduction

Consider the sequence

$$
\begin{array}{llllllllll}
11 & 12 & 13 & 14 & 15 & 16 & 17 & 18 & 19 & 20
\end{array}
$$

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2.
- What is the largest and smallest gap between two consecutive square numbers?
- This question is not applicable.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 4 and the smallest is 2 .

Consider the sequence from 1001 to 2000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 87 and the smallest is 65.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 34 and the smallest is 2.

Consider the sequence from 1001 to 2000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 87 and the smallest is 65.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 34 and the smallest is 2.

Consider the sequence from 1001 to 2000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 87 and the smallest is 65 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 34 and the smallest is 2.

Consider the sequence from 1001 to 2000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 87 and the smallest is 65 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 34 and the smallest is 2 .

Consider the sequence from 1000001 and 2000000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 2827 and the smallest is 2001
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 132 and the smallest is 2.

Consider the sequence from 1000001 and 2000000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 2827 and the smallest is 2001
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 132 and the smallest is 2.

Consider the sequence from 1000001 and 2000000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 2827 and the smallest is 2001.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 132 and the smallest is 2.

Consider the sequence from 1000001 and 2000000:

- What is the largest and smallest gap between two consecutive even numbers?
- The answer for both is 2 .
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 2827 and the smallest is 2001.
- What is the largest and smallest gap between two consecutive square numbers?
- The largest is 132 and the smallest is 2 .

Range	\# Evens	\# Squares	\# Primes
$11-20$	5	1	4
$1001-2000$	500	13	135
$1000001-2000000$	500000	414	70435

	Evens		Squares			Primes		
R	$\#$	Gaps	$\#$	S Gap	B Gap	$\#$	S Gap	B Gap
10	5	2	1	NA	NA	4	2	4
10^{3}	500	2	13	65	87	135	2	34
10^{6}	$5 \cdot 10^{5}$	2	414	2001	2827	70435	2	132
x	$\frac{x}{2}$	2	$(\sqrt{2}-1) \sqrt{x}$	$2 \sqrt{x}$	$2 \sqrt{2 x}$	$\frac{x}{\log x}$	2	$(\log x)^{2}$

Prime Gaps

Range	$\#$	Small Gap	Average Gap	Large Gap
10	4	2	2	4
1000	135	2	7.33	34
1000000	70435	2	14.20	132
x	$\frac{x}{\log x}$	2	$\log x$	$(\log x)^{2}$

Twin Prime Conjectures

Conjecture (Twin Prime)

There are infinitely many primes p such that $p+2$ is also prime.
Let's make a slightly stronger conjecture that we can analyze as a function of a variable x :

Conjecture

Let x be a large integer. There is a prime p between $x+1$ and $2 x$ such that $p+2$ is also prime. That is, in the graph from the previous slide, the smallest gap when the range is x will be 2 .

Theorem

For x a large integer, there are two primes p and q between $x+1$ and $2 x$ such that $|q-p| \leq \log x$.

Results on short gaps

Let $S(x)$ be the smallest gap between two primes between $x+1$ and $2 x$. Then

- $\frac{S(x)}{\log x} \leq 1$.
- $\frac{S(x)}{\log x} \leq 1-c$, for infinitely many x and a fixed $c>0$ (Erdős, 1940)
- $\frac{S(x)}{\log x} \leq \frac{1}{2}$ for infinitely many x (Bombieri-Vinogradov, 1966)
$\frac{S(x)}{\log x} \leq \frac{1}{2} e^{-\gamma}=0.2807 \ldots$ for infinitely
$\frac{S(x)}{\log x} \leq 1 / 4$ for infinitely many x (Maier)
- $\liminf _{x \rightarrow \infty} \frac{S(x)}{\log x}=0$. (Goldston-Pintz-Yildirim, 2005)

Results on short gaps

Let $S(x)$ be the smallest gap between two primes between $x+1$ and $2 x$. Then

- $\frac{S(x)}{\log x} \leq 1$.
- $\frac{S(x)}{\log x} \leq 1-c$, for infinitely many x and a fixed $c>0$ (Erdős, 1940).
- $\frac{S(x)}{\log x} \leq \frac{1}{2}$ for infinitely many x (Bombieri-Vinogradov, 1966).

- $\liminf _{x \rightarrow \infty} \frac{S(x)}{\log x}=0$. (Goldston-Pintz-Yildirim, 2005)

Results on short gaps

Let $S(x)$ be the smallest gap between two primes between $x+1$ and $2 x$. Then

- $\frac{S(x)}{\log x} \leq 1$.
- $\frac{S(x)}{\log x} \leq 1-c$, for infinitely many x and a fixed $c>0$ (Erdős, 1940).
- $\frac{S(x)}{\log x} \leq \frac{1}{2}$ for infinitely many x (Bombieri-Vinogradov, 1966).
- $\frac{S(x)}{\log x} \leq \frac{1}{2} e^{-\gamma}=0.2807 \ldots$ for infinitely many x (Maier 1988)
- $\frac{S(x)}{\log x} \leq 1 / 4$ for infinitely many x (Maier)
- $\liminf _{x \rightarrow \infty} \frac{S(x)}{\log x}=0$. (Goldston-Pintz-Yildinim, 2005)

Results on short gaps

Let $S(x)$ be the smallest gap between two primes between $x+1$ and $2 x$. Then

- $\frac{S(x)}{\log x} \leq 1$.
- $\frac{S(x)}{\log x} \leq 1-c$, for infinitely many x and a fixed $c>0$ (Erdős, 1940).
- $\frac{S(x)}{\log x} \leq \frac{1}{2}$ for infinitely many x (Bombieri-Vinogradov, 1966).
- $\frac{S(x)}{\log x} \leq \frac{1}{2} e^{-\gamma}=0.2807 \ldots$ for infinitely many x (Maier 1988).
- $\frac{S(x)}{\log x} \leq 1 / 4$ for infinitely many x (Maier).
- $\liminf _{x \rightarrow \infty} \frac{S(x)}{\log x}=0$. (Goldston-Pintz-Yildirim, 2005)

Results on short gaps

Let $S(x)$ be the smallest gap between two primes between $x+1$ and $2 x$. Then

- $\frac{S(x)}{\log x} \leq 1$.
- $\frac{S(x)}{\log x} \leq 1-c$, for infinitely many x and a fixed $c>0$ (Erdős, 1940).
- $\frac{S(x)}{\log x} \leq \frac{1}{2}$ for infinitely many x (Bombieri-Vinogradov, 1966).
- $\frac{S(x)}{\log x} \leq \frac{1}{2} e^{-\gamma}=0.2807 \ldots$ for infinitely many x (Maier 1988).
- $\frac{S(x)}{\log x} \leq 1 / 4$ for infinitely many x (Maier).
- $\liminf _{x \rightarrow \infty} \frac{S(x)}{\log x}=0$. (Goldston-Pintz-Yildirim, 2005)

Goldston-Pintz-Yildirim

Theorem (GPY)

Let $\epsilon>0$, then for infinitely many x,

$$
\liminf _{x \rightarrow \infty} \frac{S(x)}{(\log x)^{1 / 2+\epsilon}}=0
$$

Furthermore, if the Elliott-Halberstam conjecture is true,

$$
S(x) \leq 16
$$

for infinitely many x.

Zhang's Theorem

In May 2013, Yitang Zhang, a lecturer (at the time) at the University of New Hampshire managed to break the bounded barrier when he proved the following:

Theorem (Zhang)

For infinitely many x,

$$
S(x) \leq 70000000 .
$$

Polymath8 Progress

Enrique Treviño
Prime gaps: a breakthrough in number theory

Polymath8 Progress

Enrique Treviño
Prime gaps: a breakthrough in number theory

Polymath8 Progress

Enrique Treviño
Prime gaps: a breakthrough in number theory

Polymath8 Progress

Enrique Treviño
Prime gaps: a breakthrough in number theory

Polymath8 Results

Polymath8 was able to improve Zhang's result to:

$$
S(x) \leq 4680
$$

for infinitely many x.

Maynard and Polymath8b

In November of 2013, Maynard, a postdoc at U. Montreal came out with a different proof of the bounded small gaps. A proof that does not require an improvement on Bombieri-Vinogradov:

Theorem (Maynard)

For infinitely many x :

$$
S(x) \leq 600 .
$$

Furthermore if the Elliott-Halberstam conjecture is true, then for infinitely many x

$$
S(x) \leq 12 .
$$

Polymath8b

Polymath8 joined Maynard and they are improving his result. The latest results (updated September 15, 2014) are:

Theorem (Polymath8b)

For infinitely many x,

$$
S(x) \leq 246 .
$$

Furthermore if EH is true, then for infinitely many x

$$
S(x) \leq 6 .
$$

There seems to be some slight room for improvement to lower 246 , but the second result (a bound of 6) is staying put. The famous sieve parity barrier is preventing any improvement there.

Thank you!

