Squares and non-squares modulo a prime

Enrique Treviño

Swarthmore College

Lake Forest College Talk February 12, 2013

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

- Every positive integer n falls in one of three categories: $n \equiv 0$, 1 or 2 (mod 3).
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Squares and non-squares

Let n be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call q a square mod n if there exists an integer x such that $x^2 \equiv q \pmod{n}$. Otherwise we call q a non-square.

- For n = 3, the squares are $\{0, 1\}$ and the non-square is 2.
- For n = 5, the squares are $\{0, 1, 4\}$ and the non-squares are $\{2, 3\}$.
- For n = 7, the squares are $\{0, 1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$.
- For n = p, an odd prime, there are $\frac{p+1}{2}$ squares and $\frac{p-1}{2}$ non-squares.

Least non-square

How big can the least non-square be? Let g(p) be the least non-square modulo p.

p	Least non-square		
3	2		
5	2		
7	3		
11	2		
13	2		
17	3		
19	2		
23	5		
29	2		
31	3		

p	Least non-square		
7	3		
23	5		
71	7		
311	11		
479	13		
1559	17		
5711	19		
10559	23		
18191	29		
31391	31		
422231	37		
701399	41		
366791	43		
3818929	47		

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If $k = \log \pi(x)/\log 2$ you would expect only one prime satisfying $g(p) = p_k$.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying g(p) ≫ log p log log log p, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}} + \epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\rho}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying g(p) ≫ log p log log log p, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

Explicit estimates on the least non-square modp

Norton showed

$$g(p) \le \begin{cases} 3.9p^{1/4} \log p & \text{if } p \equiv 1 \pmod{4}, \\ 4.7p^{1/4} \log p & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Theorem (ET 2011)

Let p > 3 be a prime. Let g(p) be the least non-square modp. Then

$$g(p) \le \left\{ egin{array}{ll} 0.9p^{1/4} \log p & \mbox{if } p \equiv 1 \pmod{4}, \\ 1.1p^{1/4} \log p & \mbox{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Explicit estimates on the least non-square mod p

Norton showed

$$g(p) \le \begin{cases} 3.9p^{1/4} \log p & \text{if } p \equiv 1 \pmod{4}, \\ 4.7p^{1/4} \log p & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Theorem (ET 2011)

Let p > 3 be a prime. Let g(p) be the least non-square mod p. Then

$$g(p) \le \left\{ egin{array}{ll} 0.9 p^{1/4} \log p & \mbox{if } p \equiv 1 \pmod 4, \\ 1.1 p^{1/4} \log p & \mbox{if } p \equiv 3 \pmod 4. \end{array}
ight.$$

Theorem (Burgess 1962)

Let g(p) be the least non-square mod p. Let $\varepsilon>0$. There exists p_0 such that for all primes $p\geq p_0$ we have $g(p)< p^{\frac{1}{4\sqrt{e}}+\varepsilon}$.

Theorem (ET)

Let g(p) be the least non-square mod p. Let p be a prime greater than 10^{4685} , then $g(p) < p^{1/6}$.

Consecutive squares or non-squares

Let H(p) be the largest string of consecutive nonzero squares or non-squares modulo p.

For example, with p = 7 we have that the nonzero squares are $\{1, 2, 4\}$ and the non-squares are $\{3, 5, 6\}$. Therefore H(7) = 2.

р	H(p)	
11	3	
13	4	
17	3	
19	4	
23	4	
29	4	
31	4	
37	4	
41	5	

Burgess proved in 1963 that $H(p) \leq Cp^{1/4} \log p$.

Mathematician	Year	С	Restriction
Norton*	1973	2.5	$p > e^{15}$
Norton*	1973	4.1	None
Preobrazhenskaya	2009	1.85+o(1)	Not explicit
McGown	2012	7.06	$p > 5 \cdot 10^{18}$
McGown	2012	7	$p > 5 \cdot 10^{55}$
ET	2012	1.495+ o(1)	Not explicit
ET	2012	1.55	$p > 2.5 \cdot 10^9$
ET	2012	3.64	None

^{*}Norton didn't provide a proof for his claim.

There are infinitely many primes

Start with $q_1 = 2$. Supposing that q_j has been defined for $1 \le j \le k$, continue the sequence by choosing a prime q_{k+1} for which

$$q_{k+1} \mid 1 + \prod_{j=1}^k q_j.$$

Then 'at the end of the day', the list $q_1, q_2, q_3, ...$ is an infinite sequence of distinct prime numbers.

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_1 = 2$, then define recursively q_k to be the **smallest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i,e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, . . .
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take $q_1 = 2$, then define recursively q_k to be the **largest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- One of the results used in Booker's proof is the upper bound on g(p).

Let g(p) be the least non-square mod p.

Theorem

$$g(p) \leq \sqrt{p} + 1$$
.

Proof.

Suppose g(p)=q with $q>\sqrt{p}+1$. Let k be the ceiling of p/q. Then p< kq< p+q, so $kq\equiv a \mod p$ for some 0< a< q, and therefore kq is a square modulo p. Since $q>\sqrt{p}+1$, then $p/q<\sqrt{p}$, so k is at most the ceiling of $\sqrt{p}<\sqrt{p}+1< q$. Therefore k is a square modulo p. But if k and kq are squares modulo p, then q is a square modulo p. Contradiction!

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \leq \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \leq \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \dots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2g(p) \le \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

- The largest string of non-squares is $< 2\sqrt{p}$.
- Suppose $\{a+1, a+2, \dots, a+H\}$ are all squares mod p.
- For n a non-square, $na + n, \dots, na + Hn$ are non-squares.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let k be the largest integer such that $k^2g(p) \leq \sqrt{p}/2$.
- $(k+1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k+1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-square in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_1, Q_2, \dots Q_r$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \geq 0$. Then there is another omitted prime smaller than

$$24^2 \left(\prod_{i=1}^r Q_i\right)^2.$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4\sqrt{e}-1}=0.178734\ldots, \text{ provided that } 24^2 \text{ is also replaced by a possibly larger constant.}$

Proof Sketch

Let $X = 24^2 (\prod_{i=1}^r Q_i)^2$. Assume there is no prime missing from [2, X] besides Q_1, \ldots, Q_r . Let p be the prime in [2, X] that is last to appear in the sequence $\{q_i\}$.

Let *n* be such that $q_n = p$. Then $1 + q_1 \dots q_{n-1} = Q_1^{e_1} \dots Q_r^{e_r} p^e$. Let d be the smallest number satisfying the following conditions:

- (i) $d \equiv 1 \pmod{4}$,
- (ii) $d \equiv -1 \pmod{Q_1 \dots Q_r}$
- (iii) d and -1 are either both squares mod p or both non-squares mod p.
 - Using the Chinese Remainder Theorem and the bound on H(p) yields that $d \leq X$.
 - Given the conditions on d and using that d < X shows that d is both a square and a non-square mod $1 + q_1 q_2 \dots q_{n-1}$. Contradiction!

Legendre Symbol

$$Let\left(\frac{a}{p}\right) = \left\{ \begin{array}{ll} 0 & , & \text{if } a \equiv 0 \bmod p, \\ \\ 1 & , & \text{if } a \text{ is a square } \bmod p \\ \\ -1 & , & \text{if } a \text{ is a non-square } \bmod p. \end{array} \right.$$

- $\left(\frac{a}{p}\right)$ has the following important properties:
 - $\left(\frac{a}{p}\right) = \left(\frac{a+p}{p}\right)$ for all a.
 - $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ for all a, b.
 - $\left(\frac{a}{p}\right) \neq 0$ if and only if $\gcd(a, p) = 1$.

Dirichlet Character

Let *n* be a positive integer.

 $\chi: \mathbb{Z} \to \mathbb{C}$ is a Dirichlet character $\operatorname{mod} n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a\in\mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if gcd(a, n) = 1.

The Legendre symbol is an example of a Dirichlet character.

A simple but powerful idea

Let g(p) = m be the least non-square modulo p. Suppose $\chi(a) = \left(\frac{a}{p}\right)$ Then $\chi(n) = 1$ for n = 1, 2, 3, ..., m-1 and $\chi(m) = -1$. Therefore

$$\sum_{i=1}^m \chi(i) = m-2 < m,$$

and

$$\sum_{i=1}^k \chi(i) = k \text{ for all } k < m.$$

Therefore bounding $\sum_{i=1}^{n} \chi(i)$ can give an upper bound for g(p).

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \le c\sqrt{q} \log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Vinogradov's Trick: Showing $g(p) \ll p^{\frac{1}{2\sqrt{\rho}}+arepsilon}$

- Suppose $\sum_{n \le x} \chi(n) = o(x)$.
- Let $y = x^{1/\sqrt{e}+\delta}$ for some $\delta > 0$. So $\log \log x \log \log y = \log (1/\sqrt{e} + \delta) < 1/2$
- Suppose g(p) > y.

$$\sum_{n \le x} \chi(n) = \sum_{n \le x} 1 - 2 \sum_{\substack{y < q \le x \\ \chi(q) = -1}} \sum_{n \le \frac{x}{q}} 1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \le x} \chi(n) \ge \lfloor x \rfloor - 2 \sum_{y < q \le x} \left\lfloor \frac{x}{q} \right\rfloor \ge x - 1 - 2x \sum_{y < q \le x} \frac{1}{q} - 2 \sum_{y < q \le x} 1.$$

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|S_{\chi}(M,N)| = \left|\sum_{M < n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Consider

$$\left|\sum_{n\leq N}\chi(n)\right|.$$

By Burgess

$$\left|\sum_{n\leq N}\chi(n)\right|\ll N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}+\epsilon}.$$

However, if $\chi(n) = 1$ for all $n \leq N$, then

$$N \leq \left| \sum_{n \leq N} \chi(n) \right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon},$$

SO

$$N^{\frac{1}{r}} \ll q^{\frac{r+1}{4r^2}+\epsilon}$$
.

Hence

$$N \ll q^{\frac{1}{4} + \frac{1}{4r} + \epsilon r}$$

Now we know why

$$g(p) \ll p^{\frac{1}{4\sqrt{e}}+\varepsilon},$$

but how do we go from there to be able to figure out the theorem:

Theorem (ET)

Let g(p) be the least non-square mod p. Let p be a prime greater than 10^{4685} , then $g(p) < p^{1/6}$.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}$$

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.71 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

- The explicit estimate on the least non-square showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

- The explicit estimate on the least non-square showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

- The explicit estimate on the least non-square showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

- The explicit estimate on the least non-square showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

- The explicit estimate on the least non-square showed earlier today.
- Booker computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰.
- Levin and Pomerance proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p-1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- I used similar explicit estimates of character sums to bound the least inert prime in a real quadratic field.

Thank you!