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Abstract. In this paper, we prove that for any positive fundamental discrim-

inant D > 1596, there is always at least one prime p ≤ D0.45 such that the
Kronecker symbol (D/p) = −1. This improves a result of Granville, Mollin and

Williams, where they showed that the least inert prime p in a real quadratic

field of discriminant D > 3705 is at most
√
D/2. We use a “smoothed” ver-

sion of the Pólya–Vinogradov inequality, which is very useful for numerically
explicit estimates.

1. Introduction

In [6], Granville, Mollin and Williams prove the following theorem:

Theorem 1.1. For any positive fundamental discriminant D > 3705, there is
always at least one prime p ≤

√
D/2 such that the Kronecker symbol (D/p) = −1.

Their proof consists of three parts. They verify the truth of the conjecture up
to fairly large values of D computationally. They show using analytic methods
that there are no counterexamples for D > 1032 and they complete the proof using
analytic methods combined with computation (what we’ll refer to as the hybrid
case).

Note that D is a fundamental discriminant if and only if either D is squarefree,
D 6= 1, and D ≡ 1 (mod 4) or D = 4L with L squarefree and L ≡ 2, 3 (mod 4).
Since (D/2) = −1 for D ≡ 5 (mod 8), we need only consider values of D such that
D = L ≡ 1 (mod 8) or D = 4L with L ≡ 2, 3 (mod 4).

For the computational aspect, they used the Manitoba Scalable Sieving Unit,
a very powerful sieving machine (see [8] for more details). They ran the machine
for a period of 5 months to produce three tables. From these tables the relevant
information is the following:

If

(a) L ≡ 1 (mod 8) with (L/q) = 0 or 1 for all odd q ≤ 257,
(b) L ≡ 2 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ 283, or
(c) L ≡ 3 (mod 4) with (L/q) = 0 or 1 for all odd q ≤ 277

then L > 2.6× 1017.
From (a) we see that if D is odd and D < 2.6 × 1017 then there exists q ≤ 257

for which (D/q) = −1, verifying the theorem for D > 4(257)2 = 264196. From
(b) and (c) we see that if D is even and D = 4L < 4 × 2.6 × 1017 = 1.04 × 1018

then there exists a q ≤ 283 for which (D/q) = −1, verifying the theorem for

2000 Mathematics Subject Classification. Primary 11L40, 11Y40, 11R11.
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D > 4(283)2 = 320356. Running a simple loop over all fundamental discriminants
below 320356 we find that if we let

S = {D| the least prime p such that (D/p) = −1 satisfies p >
√
D/2},

then

S = {5, 8, 12, 13, 17, 24, 28, 33, 40, 57, 60, 73, 76, 88, 97, 105, 120, 124,

129, 136, 145, 156, 184, 204, 249, 280, 316, 345, 364, 385, 424, 456,

520, 561, 609, 616, 924, 940, 984, 1065, 1596, 2044, 3705}.
We point out that in [6] they failed to mention that 120 and 561 are in S and

they incorrectly claim 2244 ∈ S (note that 2244 is not a fundamental discriminant
since 2244/4 = 561 ≡ 1 (mod 4)). Theorem 1.1 was first conjectured in Chapter 6
of [9] with a slightly different wording, focusing on the radicand instead of on the
fundamental discriminant. When [6] translated radicands to discriminants there
were mistakes; changing 561 to 2244 (this accounts for claiming 2244 ∈ S while
neglecting that 561 ∈ S) and we suspect that since 60 ∈ S they thought that the
radicand 30 was already accounted for, therefore not including 120 in S.

For the analytical methods in the proof, i.e., to show that D > 1032 works, the
main tool in the paper is the Pólya–Vinogradov inequality. The Pólya–Vinogradov
inequality states that there exists an absolute universal constant c such that for

every character χ to the modulus q we have the inequality

∣∣∣∣∣
M+N∑
n=M+1

χ(n)

∣∣∣∣∣ ≤ c√q log q.

This is the aspect on which we have been able to make some improvements by
using the Smoothed Pólya–Vinogradov inequality, recently introduced by Levin,
Pomerance, and Soundararajan [7].

To complete the proof, i.e., to show that when D ≤ 1032, D > 2.6×1017 works in
the odd case and D > 1.04×1018 works in the even case, the authors combined the
Pólya–Vinogradov inequality with computation. This aspect of their proof would
not be needed if one uses the Smoothed Pólya–Vinogradov, however it is needed in
our case to be able to improve their theorem.

In this paper we will prove

Theorem 1.2. For any positive fundamental discriminant D > 1596, there is
always at least one prime p ≤ D0.45 such that the Kronecker symbol (D/p) = −1.

Note, that by using the tables provided in [6] the only even values of D <
1.04 × 1018 that can contradict the theorem satisfy D < 2831/.45 < 280812 and
the only odd values of D < 2.6 × 1017 that can contradict the theorem satisfy
D < 2571/.45 < 226677. Checking over all these values we find that the set of
counterexamples S

′
is

S
′

= {8, 12, 24, 28, 33, 40, 60, 105, 120, 156, 184, 204, 280, 364, 456, 520, 1596}.

This set is sparser than S because for D < 220 = 1048576,
√
D/2 is smaller than

D0.45.
In this paper, we are concerned with numerically explicit estimates. If we were

interested in asymptotic results, then using the Burgess inequality (see [2]), it can be
shown that the least inert prime in a real quadratic field of fundamental discriminant

D is �ε D
1

4
√

e
+ε

, where ε is a positive real number. We can do much better by
assuming the extended Riemann Hypothesis, since in that case, Bach [1, Theorem
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2, p. 372] proved that the least inert prime is at most 2(logD)2. It is also worth
pointing out that in this paper, we deal with the difficult case of D not necessarily
being prime. If D were prime, then Norton [11] proved that the least inert prime
is at most 3.9D1/4 logD, and the author [16] improved this to 0.9D1/4 logD.1

This paper is divided as follows: In section 2, we prove a slightly better smoothed
Pólya–Vinogradov inequality, one that uses a little more information about the
modulus of the character. This inequality will be key in our proof of Theorem 1.2.
In section 3, we will prove many technical lemmas that will be used in the proof of
the main theorem. In section 4 we prove the theorem for D > 1024 and in the last
section (section 5) we close the gap proving the theorem for D > 1018 when D is
even and D > 1017 when D is odd.

2. Smoothed Pólya–Vinogradov

Theorem 2.1. Let χ be a primitive character to the modulus q > 1, let M,N be
real numbers with 0 < N ≤ q. Then

|Sχ(M,N)| =

∣∣∣∣∣∣
∑

M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣∣ ≤ φ(q)

q

√
q + 2(ω(q)−1)

N
√
q
.

Proof. We follow the proof in [7]. Let

H(t) = max{0, 1− |t|}.

We wish to estimate |Sχ(M,N)|.
Using the identity (see Corollary 9.8 in [10])

χ(n) =
1

τ(χ̄)

q∑
j=1

χ̄(j)e(nj/q),

where e(x) := e2πix and τ(χ) =

q∑
a=1

χ(a)e(a/q) is the Gauss sum, we can deduce

Sχ(M,N) =
1

τ(χ̄)

q∑
j=1

χ̄(j)
∑
n∈Z

e(nj/q)H

(
n−M
N

− 1

)
.

The Fourier transform (see Appendix D in [10]) of H is

Ĥ(s) =

∫ ∞
−∞

H(t)e(−st)dt =
1− cos 2πs

2π2s2
when s 6= 0, Ĥ(0) = 1,

which is nonnegative for s real. In general, if f(t) = e(αt)H(βt + γ) with β > 0,

then f̂(s) = 1
β e
(
s−α
β γ

)
Ĥ
(
s−α
β

)
, using α = j/q, β = 1/N and γ = −M/N − 1,

then by Poisson summation we get

Sχ(M,N) =
N

τ(χ̄)

q∑
j=1

χ̄(j)
∑
n∈Z

e

(
−(M +N)

(
n− j

q

))
Ĥ

((
n− j

q

)
N

)
.

1Norton announced in [12] that he could prove that the least inert prime was at most

1.1D1/4(logD + 4), but he did not prove it.
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Using that if (n, q) > 1 then χ(n) = 0, that Ĥ is nonnegative and that |τ(χ̄)| = √q
for primitive characters, we have∣∣Sχ(M,N)

∣∣ ≤ N
√
q

q∑
j=1

(j,q)=1

∑
n∈Z

Ĥ

((
n− j

q

)
N

)
=

N
√
q

∑
k∈Z

(k,q)=1

Ĥ

(
kN

q

)
.

Using inclusion-exclusion we get

|Sχ(M,N)| ≤ N
√
q

∑
d|q

µ(d)
∑
k∈Z

Ĥ

(
kdN

q

)
=
√
q
∑
d|q

µ(d)

d

∑
k∈Z

dN

q
Ĥ

(
kdN

q

)
.

Since the Fourier transform of H
(
qt
Nd

)
is dN

q Ĥ
(
sdN
q

)
, then by Poisson summation

|Sχ(M,N)| ≤ √q
∑
d|q

µ(d)

d

∑
l∈Z

H

(
ql

Nd

)
=
√
q
∑
d|q

µ(d)

d

1 + 2
∑

1≤l≤Nd
q

(
1− ql

Nd

)
(2.1)

=
√
q
∑
d|q

µ(d)

d
+ 2
√
q
∑
d|q

µ(d)

d

∑
1≤l≤Nd

q

(
1− ql

Nd

)

=
φ(q)

q

√
q + 2

√
q
∑
d|q

µ(d)

d

∑
1≤l≤Nd

q

(
1− ql

Nd

)
.

Note that for the last inner sum to be non-empty, d ≥ q
N . Let’s calculate the inner

sum: ∑
1≤l≤Nd

q

(
1− ql

Nd

)
=

⌊
Nd

q

⌋(
1− q

2Nd

(⌊
Nd

q

⌋
+ 1

))
.

Replacing
⌊
Nd
q

⌋
with Nd

q −
{
Nd
q

}
and multiplying through, we get:

(2.2)
∑

1≤l≤Nd
q

(
1− ql

Nd

)
=
Nd

2q
− 1

2
+

q

2Nd

{
Nd

q

}(
1−

{
Nd

q

})
.

Now,

(2.3)
q

2Nd

{
Nd

q

}(
1−

{
Nd

q

})
≤ q

8Nd
≤ 1

8
.

The last inequality follows from d ≥ q
N . Combining (2.2) with (2.3) we get

(2.4) 0 ≤
∑
l≤Nd

q

(
1− ql

Nd

)
<
Nd

2q
.

From (2.1) and (2.4) we get

|Sχ(M,N)| < φ(q)

q

√
q + 2

√
q
∑
d|q

µ(d)=1

1

d

(
Nd

2q

)
≤ φ(q)

q

√
q +

N
√
q

∑
d|q

µ(d)=1

1

=
φ(q)

q

√
q + 2(ω(q)−1)

N
√
q
.
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3. Useful lemmas

We start by calculating a sum that pops up when dealing with the smoothed
Pólya–Vinogradov inequality.

Lemma 3.1. If x is a positive real number, then∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) = x− ‖x‖

2

x
,

where ‖x‖ is the distance from x to the nearest integer.

Proof. Let’s work on the sum:

∑
n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

∑
n≤x

n

x
+

∑
x<n≤2x

(
2− n

x

)
=

2

x

∑
n≤x

n− 1

x

∑
n≤2x

n+ 2b2xc − 2bxc

(3.1)

=
2

x

bxc(bxc+ 1)

2
− 1

x

b2xc(b2xc+ 1)

2
+ 2b2xc − 2bxc

=
b2xc
2x

(2x+ {2x} − 1)− bxc
x

(x+ {x} − 1) .

Case 1: ‖x‖ = {x}. Then b2xc = 2bxc and {2x} = 2{x}. Using this and equation
(3.1) we get∑

n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

bxc
x

(2x+ 2{x} − 1− x− {x}+ 1)

=
bxc
x

(x+ {x}) =
x2 − {x}2

x
= x− ‖x‖

2

x
.

Case 2: ‖x‖ = 1− {x}. Then b2xc = 2bxc+ 1 and {2x} = 2{x} − 1. Using this
and equation (3.1) we get∑

n≤2x

(
1−

∣∣∣n
x
− 1
∣∣∣) =

2bxc+ 1

2x
(2x+ 2{x} − 2)− bxc

x
(x+ {x} − 1)

=
bxc
x

(x+ {x} − 1) +
1

2x
(2x+ 2{x} − 2) =

x+ {x} − 1

x
(bxc+ 1)

=
(x+ ({x} − 1))(x− ({x} − 1))

x
=
x2 − (1− {x})2

x
= x− ‖x‖

2

x
.

�

In the proof of the main theorem, we will need to consider the same sum but
sieving out the numbers n that satisfy gcd (n,D) > 1. Therefore we prove the
following result.

Lemma 3.2. Let N be a positive real number and let D be a positive integer. Then∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣) ≥ φ(D)

D
N − 2(ω(D)−2).
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Proof. Using Lemma 3.1,

(3.2)∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣) =

∑
d|D

µ(d)
∑
n≤ 2N

d

(
1−

∣∣∣∣ndN − 1

∣∣∣∣) =
∑
d|D

µ(d)

(
N

d
−
‖Nd ‖

2

N
d

)

=
∑
d|D

µ(d)

d
N −

∑
d|D

µ(d)
‖Nd ‖

2

N
d

=
φ(D)

D
N −

∑
d|D

µ(d)
‖Nd ‖

2

N
d

.

Now, since
‖N

d ‖
2

N
d

is nonnegative, we can bound the sum by summing over d such

that µ(d) = 1. Also, if d ≥ 2N then ‖N/d‖ = N/d, so we can split it in two sums.

(3.3)∑
d|D

µ(d)
‖Nd ‖

2

N
d

=
∑
d≤2N
d|D

µ(d)
‖Nd ‖

2

N
d

+
∑
d>2N
d|D

µ(d)
N

d
≤

∑
d≤2N

d|D, µ(d)=1

d

4N
+

∑
d>2N

d|D, µ(d)=1

N

d

≤
∑
d≤2N

d|D, µ(d)=1

1

2
+

∑
d>2N

1

2

d|D, µ(d)=1

=
∑
d|D

µ(d)=1

1

2
= 2(ω(D)−2).

Combining (3.2) and (3.3) we get the lemma.
�

The previous lemma has 2ω(D) in its error term, therefore it is useful to have
explicit bounds on 2ω(D). We find such estimates in the following lemma.

Lemma 3.3. Let D be a positive integer. Then 2ω(D) < 4.8618D1/4. If D >
7.43×1012 then 2ω(D) < 2.4817D1/4. If D > 3.05×1014, then 2ω(D) < 1.9615D1/4.
If D > 1.31 × 1016 then 2ω(D) < 1.532D1/4. Finally, if D > 3.26 × 1019, then
2ω(D) < D1/4.

Proof. Since 2ω is multiplicative, we have

2ω(D)

D1/4
≤
∏
p|D

2

p1/4
.

Since 13 is the last prime p with p
1
4 < 2, then∏

p|D

2

p1/4
≤
∏
p≤13

2

p1/4
≤ 4.8618.

Let pi be the i-th prime. Let k ≥ 6 be an integer. Assume that

D ≥M(k) :=

k∏
i=1

pi.

We will show that

(3.4)
2ω(D)

D1/4
≤

k∏
i=1

2

pi
:= F (k).

This will yield the lemma, since 7.43×1012 > M(12) and F (12) > 2.4817. The other
claims in the lemma coming from using k = 13, k = 14 and k = 16, respectively.
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Let’s prove (3.4). We will do it in two cases, when ω(D) ≤ k and when ω(D) > k.
In the first case, we have

2ω(D)

D1/4
≤ 2k

M(k)1/4
= F (k).

In the second case we have ω(D) > k. Let ω(D) = r. Since M(r) is the smallest
number with r distinct prime factors, we have that D ≥M(r). Therefore

2ω(D)

D1/4
≤ 2ω(M(r))

M(r)1/4
=

(
k∏
i=1

2

p
1/4
i

)(
r∏

i=k+1

2

p
1/4
i

)
≤

(
k∏
i=1

2

p
1/4
i

)
.

The last inequality is true since p
1/4
7 > 2, and k+ i ≥ 7 for i = 1, 2, . . . , r−k. �

The proof of the main theorem also requires explicit estimates for the sum of
primes. The following lemma (which is also of independent interest), gives lower
and upper bounds on the sum of primes up to x.

Lemma 3.4. For x a positive real number. If x ≥ a then there exist c1 and c2
depending on a such that

x2

2 log x
+

c1x
2

log2 x
≤
∑
p≤x

p ≤ x2

2 log x
+

c2x
2

log2 x
.

Table 1 gives us c1 and c2 for various values of a.

a c1 c2
315437 0.205448 0.330479
468577 0.211359 0.32593
486377 0.212904 0.325537
644123 0.21429 0.322609
678407 0.214931 0.322326
758231 0.215541 0.321504
758711 0.215939 0.321489
10544111 0.239818 0.29251

Table 1. Bounds for the sum of primes.

Proof. To estimate the sum, we will use the very good estimates of θ(x) which can
be found in Schoenfeld [14] and for the largest a we use an estimate of Dusart (see
[4] and [5]). Let x ≥ a, now let k1 and k2 satisfy

x− k2
x

log x
≤ θ(x) ≤ x+ k1

x

log x
.

Table 2 has the values of k1 and k2 for different a and it also has a column for a
constant C which will pop up later in the proof.

Now, let’s work with the sum of primes using partial summation:∑
p≤x

p =
∑
p≤x

log p
p

log p
= θ(x)

x

log x
−
∫ x

2

θ(t)

(
1

log t
− 1

log2 t

)
dt.
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For x ≥ a θ(x) ≤ x+ k1
x

log x θ(x) ≥ x− k2 x
log x

∫ x
a

t
log3 t

dt ≤ C x2

log2 x

a k1 k2 C
315437 0.0201384 1/29 0.0371582
468577 0.0201384 1/35 0.0360657
486377 0.0201384 1/37 0.0359661
644123 0.0201384 1/39 0.0352333
678407 0.0201384 1/40 0.0351014
758231 0.0201384 1/41 0.0348216
758711 0.0201384 0.0239922 0.03482
10544111 0.006788 0.006788 0.0293063

Table 2. Bounds for θ(x)

Then we can expand and get

(3.5)
∑
p≤x

p =
θ(x)x

log x
−
∫ x

2

θ(t)

log t
dt+

∫ x

2

θ(t)

log2 t
dt

=
θ(x)x

log x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt−

∫ x

a

θ(t)

log t
dt+

∫ x

a

θ(t)

log2 t
dt.

Now using this equation, we will work out an upper bound and then a lower bound.
Let’s proceed with the upper bound. We start by pointing out that for x ≥ a,

we have

(3.6)
θ(x)x

log x
≤ x2

log x
+

k1x
2

log2 x
.

Then we have

(3.7) −
∫ x

a

θ(t)

log t
dt ≤ −

∫ x

a

t− k2t
log t

log t
dt = −

∫ x

a

t

log t
dt+ k2

∫ x

a

t

log2 t
dt.

We also have

(3.8)

∫ x

a

θ(t)

log2 t
dt ≤

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt.

By using integration by parts we get

(3.9)

∫ x

a

t

log t
dt =

x2

2 log x
− a2

2 log a
+

∫ x

a

t

2 log2 t
dt,

and

(3.10)

∫ x

a

t

log2 t
dt =

x2

2 log2 x
− a2

2 log2 a
+

∫ x

a

t

log3 t
dt.

Using (3.6), (3.7) and (3.8) on (3.5) yields∑
p≤x

p ≤ x2

log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt

−
∫ x

a

t

log t
dt+ (1 + k2)

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt.
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Now, using (3.9) we get∑
p≤x

p ≤ x2

log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt− x2

2 log x
+

a2

2 log a

−
∫ x

a

t

2 log2 t
dt+ (1 + k2)

∫ x

a

t

log2 t
dt+ k1

∫ x

a

t

log3 t
dt.

By simplifying and then using (3.10) we get that the right hand side equals

x2

2 log x
+

k1x
2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

+

(
1

2
+ k2

)(
x2

2 log2 x
− a2

2 log2 a
+

∫ x

a

t

log3 t
dt

)
+ k1

∫ x

a

t

log3 t
dt.

By rearranging further we get that this equals

x2

2 log x
+

(
1

4
+ k1 +

k2
2

)
x2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

−
(

1

2
+ k2

)
a2

2 log2 a
+

(
1

2
+ k1 + k2

)∫ x

a

t

log3 t
dt.

Now,
∫ a
2
θ(t)
log t dt,

∫ a
2

θ(t)
log2 t

dt and
∫ a
2

t
log3 t

dt are constant. Also,∫ x
a

t
log3 t

dt = o
(
x2/(log2 x)

)
and hence, we can then find a constant C (see Table

2) such that ∫ x
a

t
log3 t

dt

x2

log2 x

≤ C.

Therefore, for x ≥ a, we have∑
p≤x

p ≤ x2

2 log x
+

(
1

4
+ k1 +

k2
2

+

(
1

2
+ k1 + k2

)
C +A

)
x2

log2 x
,

where

A = max

{
0,

∫ a
2

θ(t)
log2 t

dt−
∫ a
2
θ(t)
log t dt+ a2

2 log a −
(
1
2 + k2

)
a2

2 log2 a

a2

log2 a

}
.

We can now plug it into a calculator and get the third column in Table 1. This
completes our work for the upper bound.

It is time to work on the lower bound. We proceed in the same way. In fact,
every time you see a k1 in the previous inequalities, you may replace it by −k2 and
vice versa. You would also replace the ≤ symbol with ≥. After doing this, we reach
the following inequality:∑

p≤x

p ≥ x2

2 log x
+

(
1

4
− k2 −

k1
2

)
x2

log2 x
−
∫ a

2

θ(t)

log t
dt+

∫ a

2

θ(t)

log2 t
dt+

a2

2 log a

−
(

1

4
− k1

2

)
a2

log2 a
+

(
1

2
− k1 − k2

)∫ x

a

t

log3 t
dt.

Working with the constant in the lower bound is a bit trickier than in the upper
bound because we have to consider whether

(
1
2 − k1 − k2

)
is positive or negative.

In the case it is negative, we replace the integral with C, in the case it is positive
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we replace it with 0. Note that the expression is positive when x ≥ 599 and it is
negative when x < 599.

Therefore, we have two cases, for x ≥ a with a < 599 we have∑
p≤x

p ≤ x2

2 log x
+

(
1

4
− k2 −

k1
2

+

(
1

2
− k1 − k2

)
C +A

)
x2

log2 x
,

and for a ≥ 599 we have∑
p≤x

p ≤ x2

2 log x
+

(
1

4
− k2 −

k1
2

+A

)
x2

log2 x
,

where

A = min

{
0,

∫ a
2

θ(t)
log2 t

dt−
∫ a
2
θ(t)
log t dt+ a2

2 log a −
(
1
2 − k1

)
a2

2 log2 a

a2

log2 a

}
.

After plugging the numbers in the calculator we get the desired results, completing
the lemma. �

Corollary 1. For x, y real numbers such that x > y. For y ≥ a, there exist c1 and
c2 depending on a such that

1

2

(
x2

log x
− y2

log y

)
+
c1x

2

log2 x
− c2y

2

log2 y
≤

∑
y<p≤x

p ≤ 1

2

(
x2

log x
− y2

log y

)
+
c2x

2

log2 x
− c1y

2

log2 y
.

The values of c1 and c2 can be found in the table for Lemma 3.4.

Proof. It easily follows from the lemma once we write
∑

y<p≤x

p =
∑
p≤x

p−
∑
p≤y

p. �

Using the estimates on the sum of primes, we can then use these to estimate the
sum which comes up in the proof of the main theorem. We do this in the following
lemma.

Lemma 3.5. Let B ≥ 315487 and N be positive real numbers. For n ≤ 2N
B a

natural number we have the following inequality:∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n logB
.

Proof. If n ≤ N
B then

(3.11)
∑

B<p≤ 2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
B<p≤N

n

np

N
+

∑
N
n <p≤

2N
n

(
2− np

N

)
,

and if n > N
B then

(3.12)
∑

B<p≤ 2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
B<p≤ 2N

n

(
2− np

N

)
≤

∑
N
n <p≤

2N
n

(
2− np

N

)
.

Since both sums require the bounding of
∑

N
n <p≤

2N
n

(
2− np

N

)
, we’ll estimate this

first.
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Dusart (see [4, Theorem 14, p.22] or [5, Theorem 6, p.57]) proved that for x > 1,
π(2x)− π(x) ≤ x

log x . Combining that with Corollary 1 we have

(3.13)
∑

N
n <p≤

2N
n

(
2− np

N

)
= 2

(
π

(
2N

n

)
− π

(
N

n

))
− n

N

∑
N
n <p≤

2N
n

p

≤ 2N

n log N
n

− n

N

(
2N2

n2 log
(
2N
n

) − N2

2n2 log
(
N
n

) +
4c1N

2

n2 log2
(
2N
n

) − c2N
2

n2 log2
(
N
n

))

=
2N

n log
(
N
n

) − 2N

n log
(
2N
n

) +
N

2n log
(
N
n

) − 4c1N

n log2
(
2N
n

) +
c2N

n log2
(
N
n

) ,
where c1 and c2 come from Table 1 in Lemma 3.4. Since

2N

n log
(
N
n

) − 2N

n log
(
2N
n

) =
(log 4)N

n log
(
N
n

)
log
(
2N
n

) ,
then the right hand side of (3.13) becomes

N

2n log
(
N
n

) +
(log 4)N

n log
(
N
n

)
log
(
2N
n

) +
c2N

n log2
(
N
n

) − 4c1N

n log2
(
2N
n

)
which equals

(3.14)
N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N,n),

where

f(N,n) = c2 + (log 4)

(
log
(
N
n

)
log
(
2N
n

))− 4c1

(
log
(
N
n

)
log
(
2N
n

))2

.

Since log x/ log 2x is an increasing function for x > 0 and log x
log 2x < 1, then we can

bound f(N,n) by replacing the fraction with 1 in the positive term and by picking
the smallest possible value of N

n in the negative part. Since n ≤ 2N
B , then we have

that N
n ≥

B
2 . Therefore

f(N,n) ≤ c2 + log 4− 4c1

(
log
(
B
2

)
logB

)2

.

Using Lemma 3.4, for B ≥ 315487, we have c1 = 0.205448 and c2 = 0.330479 and
together with N

n ≥
B
2 we get that f(N,n) ≤ 1 yielding

(3.15)
∑

N
n <p≤

2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

) .
To complete the estimate we care about, we must now bound n

N

∑
B<p≤N

n

p. We

can do this by using Corollary 1:

n

N

∑
B<p≤N

n

p ≤ n

N

(
N2

2n2 log
(
N
n

) − B2

2 logB
+

c2N
2

n2 log2
(
N
n

) − c1B
2

log2B

)

=
N

2n log
(
N
n

) +
c2N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
.(3.16)
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Now, for n ≤ N
B , by (3.11) and using the estimates of (3.15) and (3.16) we have∑

B<p≤ 2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n log
(
N
n

) +
(1 + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
.

We want to prove that this is ≤ N
n logB . We note that N

n logB −
N

n log (N
n )

=

N log ( N
nB )

n logB log (N
n )

, so what we want is

N log
(
N
nB

)
n logB log

(
N
n

) +
c1nB

2

N log2B
+

nB2

2N logB
≥ (1 + c2)N

n log2
(
N
n

) .
After making the substition of N

n = Bk we have that we want

Bk log k

logB logBk
+

c1B

k log2B
+

B

2k logB
≥ (1 + c2)Bk

log2Bk
.

We can divide the whole inequality by B and multiply by log2Bk, so we get

k log k
logBk

logB
+
c1
k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ (1 + c2)k.

For k ≥ 4, using that for B ≥ 315487, c2 = 0.330479 we have

k log k
logBk

logB
+
c1
k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ k log k ≥ (1 + c2)k.

And for 1 ≤ k < 4 using that B ≥ 315487 we have

k log k
logBk

logB
+
c1
k

(
logBk

logB

)2

+
log2Bk

2k logB
≥ k log k +

c1
k

+
log 315487

2k
≥ (1 + c2)k.

This completes the proof of the lemma when n ≤ N
B .

For n > N
B , using (3.12) and (3.15) we have∑

B<p≤ 2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

) .
Now using that N

B < n ≤ 2N
B we have that B

2 ≤
N
n ≤ B. Using this we have

(3.17)
N

n logB
− N

2n log
(
N
n

) =
N log

(
N2

n2B

)
2n logB log

(
N
n

) ≥ N log
(
B
4

)
2n logB logB

,

and

(3.18)
N

n log2
(
N
n

) ≤ N

n log2
(
B
2

) .
For B ≥ 73 we have log (B/4) log2 (B/2) ≥ 2 log2B and hence from combining the
inequalities (3.17) and (3.18) we get

N

n logB
− N

2n log
(
N
n

) ≥ N

n log2
(
N
n

) ,
completing the proof that for n > N

B∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

n logB
.
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�

During the proof of the main theorem, one of the problems that arises comes
from bounding

D

φ(D)

∑
n≤x

(n,D)=1

1

n
.

The difficulty is that when D has many prime factors D
φ(D) is big while the other

factor is small. And if D has few prime factors we have the opposite situation. The
following lemma allows us to simplify this situation by showing that we can reduce
it to considering D having many small prime factors.

Lemma 3.6. Let M =
∏
p≤x p. For a positive integer D, let k be the positive

integer that satisfies that (D,M) = M/k. Then∑
n≤x

(n,D)=1

1

n
≤ k

φ(k)
.

Proof. Note that if n ≤ x and (n,D) = 1 then any prime p that divides n also
divides k. Therefore∑

n≤x
(n,D)=1

1

n
≤
∏
p|k

(
1 +

1

p
+

1

p2
+ . . .

)
=
∏
p|k

p

p− 1
=
∏
p|k

p

φ(p)
=

k

φ(k)
.

�

The following lemma combines Lemmas 3.5 and 3.6 to give us the result we need
in the proof of the main theorem.

Lemma 3.7. For B and N positive real numbers and D a positive integer. Let

M =
∏
p≤ 2N

B

p and k be a positive integer such that (D,M) = M
k . Then, we have

∑
B<p≤2N

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ k

φ(k)

N

logB
.

Proof. Exchanging order of summation we get:∑
B<p≤2N

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) =

∑
n≤ 2N

B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .

The inner sum can be dealt with using Lemma 3.5 and then we will use
Lemma 3.6 for the outer sum:∑

n≤ 2N
B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ ∑

n≤ 2N
B

(n,D)=1

N

n logB
≤ k

φ(k)

N

logB
.

�

Finally, we end the section with an explicit estimate concerning the ratio D
φ(D)

that will be needed in the proof of the main theorem.
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Lemma 3.8. For D a positive integer greater than 6 · 1012 we have

D

φ(D)
< 2 log logD.

Proof. Rosser and Schoenfeld [13] proved that for D > 223092870 the following
inequality is true:

D

φ(D)
≤ eγ log logD +

2.5

log logD
.

Therefore, D/φ(D) ≤ 2 log logD for D > 6 · 1012. �

4. Proof of the Theorem when D > 1024

Theorem 4.1. For D a fundamental discriminant larger than 1024 there exists a

prime p ≤ D0.45 such that
(
D
p

)
= −1

Proof. Assume to the contrary that no such p exists. Let χ(p) =
(
D
p

)
. Since D is

a fundamental discriminant, χ is a primitive character modD.
Consider

Sχ(N) =
∑
n≤2N

χ(n)
(

1−
∣∣∣ n
N
− 1
∣∣∣) .

By Theorem 2.1, we have

(4.1) |Sχ(N)| ≤ φ(D)

D

√
D + 2(ω(D)−1) N√

D
.

However, using our assumption that χ(p) 6= −1 for p ≤ D0.45 = B we can calculate
Sχ(N) by separating the sum into χ(n) = 1, 0 and −1. To account for χ(n) = 0 we
sum over the numbers relatively prime to D. The following is true when B2 > 2N :
In view of (2.1) of [6],

(4.2) Sχ(N) =
∑
n≤2N

(n,D)=1

(
1−

∣∣∣ n
N
− 1
∣∣∣)− 2

∑
B<p≤2N
χ(p)=−1

∑
n≤ 2N

p

(n,D)=1

(
1−

∣∣∣np
N
− 1
∣∣∣) .

Using Lemma 3.2 and (4.1), (4.2) we get
(4.3)
φ(D)

D

√
D+2(ω(D)−1) N√

D
≥ φ(D)

D
N−2(ω(D)−2)−2

∑
n≤ 2N

B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .

Now, letting N = c
√
D for some constant c we get that the inequality in (4.3) is

equivalent to
(4.4)

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2√

D

D

φ(D)

∑
n≤ 2N

B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .
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Using Lemma 3.7 we get that if M =
∏
p≤ 2N

B

p and (D,M) = M
k then

∑
n≤ 2N

B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

logB

k

φ(k)
=
c
√
D

logB

k

φ(k)
.

Therefore (4.4) becomes

(4.5) 0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2c

logB

D

φ(D)

k

φ(k)
.

Using Corollary 1 of Theorem 8 in [13], we get

D

φ(D)

k

φ(k)
=
∏
p≤ 2N

B

p

p− 1

∏
p> 2N

B

p|D

p

p− 1
≤ eγ

(
1 +

1

log2
(
2N
B

)) log

(
2N

B

) ∏
p> 2N

B

p|D

p

p− 1
.

Combining this with (4.5) yields

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D

(4.6)

− 2c

logB
eγ

(
1 +

1

log2
(
2N
B

)) log

(
2N

B

) ∏
p> 2N

B

p|D

p

p− 1
.

Now, let’s pick c = 8. Now, D has at most 19 primes bigger than 2N
B = 16D0.05

dividing it. We have that 2N
B > 253 and the product of p

p−1 for the first 19 primes

bigger than 253 is smaller than 1.0642. We also have that for D > 3.26 × 1019,
2ω(D) < D1/4 by Lemma 3.3. Also, for D > 1013 we have D

φ(D) < 2 log logD

(Lemma 3.8). Combining these facts with (4.6) we get the inequality:

(4.7) 0 ≥ 7− 8.5
log logD

D1/4
− 16

logB
eγ

(
1 +

1

log2
(
2N
B

)) log

(
2N

B

)
1.0642.

If we let B = D0.45, then 2N
B = 16D0.05 and the right hand side of (4.7) is

0.028836 . . . at D = 1024. Since as D increases, the right hand side increases and at
D = 1024 it is already positive, we have arrived at a contradiction for all D ≥ 1024.

�

Remark 4.2. This proof with a few modifications would yield that for D a funda-
mental discriminant larger than 1016, there exists a prime p ≤

√
D/2 such that(

D
p

)
= −1. This gives us a proof of Theorem 1.1 without the need of the hybrid

case.

5. Proof the theorem when D ≤ 1024

Theorem 5.1. For D a fundamental discriminant such that 1596 < D ≤ 1024,

there exists a prime p such that p < D0.45 and
(
D
p

)
= −1.
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Proof. Assume to the contrary that no such p exists. Following the same steps as
in the proof of Theorem 4.1 we reach (4.4):

0 ≥ c− 1− 2ω(D)

(
c

2
+

1

4

)
D

φ(D)
√
D
− 2√

D

D

φ(D)

∑
n≤ 2N

B

(n,D)=1

∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣) .

From the proof of Lemma 3.5 we can get tighter inequalities for the inner sum
in the double sum above. If we combine (3.14) and (3.16) we get: For n ≤ N

B∑
B<p≤ 2N

n

(
1−

∣∣∣np
N
− 1
∣∣∣)

≤ N

n log
(
N
n

) +
(f(N,n) + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB
= g1(N,n,B, c1, c2),

where c1 and c2 come from Table 1 in Lemma 3.4 and

f(N,n) = c2 + (log 4)

(
log
(
N
n

)
log
(
2N
n

))− 4c1

(
log
(
N
n

)
log
(
2N
n

))2

.

Now, for n > N
B , using (3.14) we get∑

B<p≤ 2N
n

(
1−

∣∣∣np
N
− 1
∣∣∣) ≤ N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N,n) = g2(N,n,B, c1, c2).

Something that will be important later on in the proof is that f(N,n) is decreas-
ing whenever n < N/6.09, therefore let’s prove it now:

Claim 1. For a fixed integer n, if we let c1 = 0.239818, then for N > 6.09n, f(N,n)
is a decreasing function.

Proof of the Claim: First note that if we let x =
log (N

n )
log ( 2N

n )
, then f(N,n) = c2 +

(log 4)x−4c1x
2. We note that the maximum occurs when x0 = log 4

8c1
= 0.722576 . . . .

For N > 6.09n we have x > x0 because x increases as N increases. Since f(N,n) is
decreasing once x > x0, then as N grows, f(N,n) decreases. This proves the claim.

Now, let c = 7.8, c1 = 0.239818 and c2 = 0.29251. Notice that N = c
√
D

depends only on D and B = D0.45 also depends only on D. Now define

g(n,D) =
1√
D

{
g1(N,n,B, c1, c2) : n ≤ N/B;
g2(N,n,B, c1, c2) : n > N/B.

Therefore for B ≥ 10544111, (4.4) becomes

(5.1) 0 ≥ 7.8− 1− 2ω(D) (4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤(15.6)D1/20

(n,D)=1

g(n,D).

Now, let M =
∏
p≤41

p and let m = gcd (D,M). Note that since m is squarefree and

41 is the 13th prime, then there are 213 possible values of m. Now, let’s define a
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function A(D,m,ω, u) in the following way

A(D,m,ω, u) = 6.8− 2ω (4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D).

Claim 2. Let m be a fixed positive integer. Let U be a fixed real number. Let

M =
∏
p≤41

p. Let D ≤ U be a positive integer such that (D,M) = m. Now let

u =
⌊
(15.6)U1/20

⌋
. Let ω be the maximum number of distinct primes a number

below U can have. If D ≥ 4.05× 1015 then 0 ≥ A(D,m,ω, u).

Proof of the Claim: Let D ≤ U . We have ω(D) ≤ ω. We also have u ≥⌊
(15.6)D1/20

⌋
. Now, D ≥ 4.05 × 1015 > 105441111/0.45, therefore B > 10544111

and hence we have (5.1). Since m|D, if (n,D) = 1 then (n,m) = 1. Also note that
g(n,D) ≥ 0. Combining this with (5.1) we have

0 ≥ 6.8− 2ω(D)(4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤(15.6)D1/20

(n,D)=1

g(n,D)

≥ 6.8− 2ω(4.15)

√
D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D) = A(D,m,ω, u).

This proves the claim.
For example, when D ≤ 1024, we would have U = 1024. Since any D ≤ 1024 has

at most 18 distinct prime factors, ω = 18. Now, u =
⌊
(15.6)U1/20

⌋
= b247.243c =

247. Once we fix an m, we get that if D ≥ 4.05× 1015 then 0 ≥ A(D,m, 18, 247).
Therefore to reach a contradiction we must find values of D for which

A(D,m, 18, 247) > 0.
Once U and m are fixed, it seems that A(D,m,ω, u) is increasing with D. The

only cause for uncertainty comes from the factor D
φ(D) and from g(n,D). Let’s deal

with this. Let pi be the i-th prime. Note p13 = 41. Since we want to maximize D
φ(D)

(to make A(D,m,ω, u) as small as possible), then we do is consider the product of

the smallest primes bigger than 41 and consider Dv(m) = m×
∏

13<i≤v

pi. Since we

also have to deal with g(n,D), what we will do is make it as big as possible in a
range. Let’s analyze the value of g(n,D):

If n ≤ N
B , then

g(n,D) =
1√
D

(
N

n log
(
N
n

) +
(f(N,n) + c2)N

n log2
(
N
n

) − c1nB
2

N log2B
− nB2

2N logB

)

=
c

n log
(
c
√
D
n

) +
(f(N,n) + c2)c

n log2
(
c
√
D
n

) − c1n

cD1/10 log2 (D.45)
− n

2cD1/10 log (D.45)

= H1(n,D)−H2(n,D),

where H1(n,D) consists of the two positive terms and H2(n,D) consists of the
two terms being substracted. Now, f(N,n) is decreasing for N > 6.09n. Since
n ≤ u = 247 we have that N > 6.09n. Therefore f(N,n) is decreasing, showing that
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H1(n,D) is decreasing. H2(n,D) is also a decreasing function, making −H2(n,D)
an increasing function.

Now, for n > N
B , we have

g(n,D) =
1√
D

(
N

2n log
(
N
n

) +
N

n log2
(
N
n

)f(N,n)

)

=
c

2n log
(
c
√
D
n

) +
cf(N,n)

n log2
(
c
√
D
n

) = H3(n,D).

Again, because f(N,n) is decreasing, the right hand side is decreasing.
All of this allows us to get the following claim:

Claim 3. Let D,D1, D2 be positive reals such that D ∈ [D1, D2), and let

G(n,D1, D2) :=

 H1(n,D1)−H2(n,D2) n ≤ cD0.05
1 ;

H3(n,D1) n > cD0.05
2 ;

max {H1(n,D1)−H2(n,D2), H3(n,D1)} otherwise.

Then g(n,D) ≤ G(n,D1, D2).

Proof of the Claim: If n ≤ cD0.05
1 , then for any D ∈ [D1, D2) we have n ≤ N

B ,
therefore g(n,D) = H1(n,D)−H2(n,D). But, since both H1 and H2 are decreasing
functions, we have g(n,D) ≤ H1(n,D1)−H2(n,D2).

If n > cD0.05
2 , then for any D ∈ [D1, D2) we have n > N

B , therefore g(n,D) =
H3(n,D). Since H3 is decreasing we have g(n,D) ≤ H3(n,D1).

For the few values of n such that cD0.05
1 < n ≤ cD0.05

2 , we just take the maximum,
so we have g(n,D) ≤ max {H1(n,D1)−H2(n,D2), H3(n,D1)}. This proves the
claim.

Now, let’s define a function similar to A called A2 so that we can take this into
account.

A2(D,m,ω, u,D1, D2) = 6.8− 2ω (4.15)√
D1

D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

G(n,D1, D2).

Claim 4. Let D be a positive integer. Let m be defined the same way as in Claim
2. Let v be an integer ≥ 13 such that Dv(m) ≥ 4.05 × 1015. Let D1 and D2 be
real numbers such that [D1, D2) ⊆ [Dv(m), Dv+1(m)). Let ω = ω(m) + v− 13. Let
u =

⌊
(15.6)D0.05

2

⌋
. Then, if D ∈ [D1, D2), we have 0 ≥ A2(Dv(m),m, ω, u,D1, D2).

Proof of the Claim: Since m|D and D < Dv+1(m) then ω(D) < ω(m)+v+1−13 ≤
ω(m) + v − 13 = ω. We also have

D

φ(D)
=

m

φ(m)

∏
p>p13
p|D

p

p− 1
≤ m

φ(m)

∏
13<i≤v

pi
pi − 1

=
Dv(m)

φ(Dv(m))
.

From Claim 3, we have g(n,D) ≤ G(n,D1, D2). Also, from Claim 2 using U =
D2 and because ω(D) ≤ ω, we have for D ≥ 4.05 × 1015, the inequality 0 ≥
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A(D,m,ω, u). Therefore, we have

0 ≥ A(D,m,ω, u) = 6.8− 2ω(4.15)√
D

D

φ(D)
− 2D

φ(D)

∑
n≤u

(n,m)=1

g(n,D)

≥ 6.8− 2ω(4.15)√
D1

Dv(m)

φ(Dv(m))
− 2Dv(m)

φ(Dv(m))

∑
n≤u

(n,m)=1

G(n,D1, D2)

= A2(Dv(m),m, ω, u,D1, D2).

What this allows us to do is just check A2(D,m,ω, u,D1, D2) for some numbers
and cover a whole interval. Our implementation will run by checking

A2(Dv(m),m, ω, u,Dv(m), Dv+1(m)),

where ω = ω(m) + v − 13 and u = b(15.6)Dv+1(m)c. The process is then to find
for each m the first v such that

A2(Dv(m),m, ω, u,Dv(m), Dv+1(m)) > 0,

and

A2(Dv+i(m),m, ω, u,Dv+i(m), Dv+i+1(m)) > 0

for all positive integers i while Dv+i(m) ≤ 1024. We will denote this Dv(m) by
K(m). Now, we find the maximum K(m) among the 213 possible m’s. We denote
this maximum by K and we note that for all D ≥ K with D ≤ 1024 we have
A(D,m,ω, u) > 0, giving us a contradiction, yielding the desired theorem for D ≥
K.

Since the odd cases are easier than the even ones (because D/φ(D) is smaller
when D is odd), we split the process in dealing with the odd D’s first and then with
the even D’s. After running a loop that computes K(m) for every odd m and finds
the maximum value K, we find that K = 21853026051351495 < 2.2 × 1016. This
implies that for all D ≥ 2.2 × 1016, odd fundamental discriminants, the theorem
is true. Since we had already dealt with the case D ≤ 2.6× 1017, this finishes the
proof for odd D.

Now let’s consider the case where D is even. In this case our goal is to prove
it for all D ≥ 1.04× 1018, since we have computational tables proving the smaller
D. Just as in the case for odd m, we run a loop that computes K(m) for every
even m and then find the maximum among this, which we call K. In this case,
K = 1707159924755154870 < 1.71 × 1018. Note that K is slightly larger than our
desired outcome since it doesn’t lead us all the way down to 1.04×1018. This forces
us to work a little harder to reach the theorem.

To get rid of this new obstacle we use the fact that in Claim 4 we have more
flexibility than we’ve been using. We need not have D1 = Dv(m) and D2 =
Dv+1(m) as we have been using so far, we could pick values in between. First of
all, we found all the m values that have D(m,U) > 1.04 × 1018. There are only
twelve values of m. By the nature of the process the twelve counterexamples are
of the form Dv(m). Seven of the examples have v = 20 and the other five have
v = 19. Therefore what we can do is consider D1 = 32Dv−1(m) and D2 = Dv(m).
After evaluating A(Dv(m),m, ω, u,D1, D2) for these twelve m’s, we find that all of
them are greater than zero. This completes the proof for even values.

Combining the result for even and odd values yields the theorem. �
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As an extra note, this naive algorithm runs in around 15 minutes on a Pen-
tium(R) Dual-Core CPU E5300 @ 2.60GHz.

Remark 5.2. With the same techniques we can prove that for D a fundamental
discriminant satisfying D > 1024, there exists a prime p such that p ≤ D3/7 and
the Kronecker symbol (D/p) = −1. Computations on pseudosquares (see [15] and
[17]) suggest that sieving machines can check for the values below 1024 (such as
MSSU computed the values under 1018).
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