The Least Inert Prime in a Real Quadratic Field

Enrique Treviño

Palmetto Number Theory Series December 4, 2010

An upperbound on the least inert prime in a real quadratic field

An integer D is a fundamental discriminant if and only if either D is squarefree, $D \neq 1$, and $D \equiv(\bmod 4)$ or $D=4 L$ with L squarefree and $L \equiv 2,3(\bmod 4)$.

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D>3705$, there is always at least one prime $p \leq \sqrt{D} / 2$ such that the Kronecker $\operatorname{symbol}(D / p)=-1$.

Improved upperbound

Theorem (ET, 2010)

For any positive fundamental discriminant $D>1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker $\operatorname{symbol}(D / p)=-1$.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

Character Sums

 Explicit Character SumsProof of main theorem
Future Work

Manitoba Scalable Sieving Unit

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus $q>1$. Let

$$
S(\chi)=\max _{M, N}\left|\sum_{n=M+1}^{M+N} \chi(n)\right|
$$

The Pólya-Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \leq c \sqrt{q} \log q$.
Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.
Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Further results regarding Pólya-Vinogradov

Granville and Soundararajan showed that one can save a small power of $\log q$ in the Pólya-Vinogradov inequality. Goldmakher improved it to

Theorem (Goldmakher, 2007)

For each fixed odd number $g>1$, for $\chi(\bmod q)$ of order g,

$$
S(\chi) \ll_{g} \sqrt{q}(\log q)^{\Delta_{g}+o(1)}, \quad \Delta_{g}=\frac{g}{\pi} \sin \frac{\pi}{g}, \quad q \rightarrow \infty
$$

Moreover, under GRH

$$
S(\chi) \ll g \sqrt{q}(\log \log q)^{\Delta_{g}+o(1)}
$$

Furthermore, there exists an infinite family of characters $\chi(\bmod q)$ of order g satisfying

$$
S(\chi) \ggg \epsilon, g \sqrt{q}(\log \log q)^{\Delta_{g}-\epsilon} .
$$

Asymptotic results on least inert primes in a real quadratic field

- Using the Pólya-Vinogradov, it easily follows that there exists a $p \ll \sqrt{D} \log D$ such that $\left(\frac{D}{p}\right)=-1$.
- By using a little sieving, we can improve this result: For every $\epsilon>0$, there exists a prime $p<\Vdash_{\epsilon} D^{\frac{1}{2 \sqrt{e}}+\epsilon}$ such that $\left(\frac{D}{p}\right)=-1$.
- Using the Burgess inequality and a little sieving, we get the best unconditional result we have now: For every $\epsilon>0$, there exists a prime $p \ll_{\epsilon} D^{\frac{1}{4 \sqrt{e}}}+\epsilon$ such that $\left(\frac{D}{p}\right)=-1$.

Burgess

Theorem (Burgess, 1962)

Let χ be a primitive character mod q with $q>1, r$ an integer and $\epsilon>0$ a real number. Then

$$
S(\chi) \ll_{\epsilon, r} N^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\epsilon}
$$

for $r=2,3$ and for any $r \geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Explicit Pólya-Vinogradov

Theorem (Hildebrand, 1988)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\left(\frac{2}{3 \pi^{2}}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { even } \\ \left(\frac{1}{3 \pi}+o(1)\right) \sqrt{q} \log q & , \quad \chi \text { odd }\end{cases}
$$

Theorem (Pomerance, 2009)

For χ a primitive character to the modulus $q>1$, we have

$$
|S(\chi)| \leq \begin{cases}\frac{2}{\pi^{2}} \sqrt{q} \log q+\frac{4}{\pi^{2}} \sqrt{q} \log \log q+\frac{3}{2} \sqrt{q} \quad, \quad \chi \text { even } \\ \frac{1}{2 \pi} \sqrt{q} \log q+\frac{1}{\pi} \sqrt{q} \log \log q+\sqrt{q} \quad, \quad \chi \text { odd }\end{cases}
$$

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a Dirichlet character $\bmod p$ (a prime). Then for $r \geq 2$

$$
\left|S_{\chi}(N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}} .
$$

Theorem (ET, 2009)

Let χ be a Dirichlet character $\bmod p$ (a prime). Then for $r \geq 2$ and $p \geq 10^{7}$.

$$
\left|S_{\chi}(N)\right| \leq 3 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}}
$$

Note, the constant gets better for larger r, for example for $r=3,4,5,6$ the constant is $2.376,2.085,1.909,1.792$ respectively.

Quadratic Case for Burgess

Theorem (Booker, 2006)

Let $p>10^{20}$ be a prime number $\equiv 1(\bmod 4), r \in\{2, \ldots, 15\}$ and $0<M, N \leq 2 \sqrt{p}$. Let χ be a quadratic character $(\bmod p)$. Then

$$
\left|\sum_{M \leq n<M+N} \chi(n)\right| \leq \alpha(r) p^{\frac{r+1}{4 r^{2}}}(\log p+\beta(r))^{\frac{1}{2 r}} N^{1-\frac{1}{r}}
$$

where $\alpha(r), \beta(r)$ are given by

r	$\alpha(r)$	$\beta(r)$	r	$\alpha(r)$	$\beta(r)$
2	1.8221	8.9077	9	1.4548	0.0085
3	1.8000	5.3948	10	1.4231	-0.4106
4	1.7263	3.6658	11	1.3958	-0.7848
5	1.6526	2.5405	12	1.3721	-1.1232
6	1.5892	1.7059	13	1.3512	-1.4323
7	1.5363	1.0405	14	1.3328	-1.7169
8	1.4921	0.4856	15	1.3164	-1.9808

Some Applications of the Explicit Estimates

- Norton showed that for every prime p, it's least quadratic non-residue is $\leq 4.7 p^{1 / 4} \log p$.
- For computing class numbers of large discriminants. Booker, computed the class number of a 32-digit discriminant.
- To prove a conjecture of Brizolis (Levin, Pomerance) that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x$ $(\bmod p)$.

Smoothed Pólya-Vinogradov

Let M, N be real numbers with $0<N \leq q$, then define $S^{*}(\chi)$ as follows:

$$
S^{*}(\chi)=\max _{M, N}\left|\sum_{M \leq n \leq 2 N} \chi(n)\left(1-\left|\frac{a-M}{N}-1\right|\right)\right|
$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \leq \sqrt{q}-\frac{N}{\sqrt{q}}
$$

Lowerbound for the smoothed Pólya-Vinogradov

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \geq \frac{2}{\pi^{2}} \sqrt{q} .
$$

Therefore, the order of magnitude of $S^{*}(\chi)$ is \sqrt{q}.

A little background on the smoothed Pólya-Vinogradov

L.K. Hua had proved an equivalent statement for prime modulus and used it to give an upperbound for the least primitive root.

Theorem (Hua, 1942)

Let $p>2,1 \leq A<(p-1) / 2$. Then, for each non-principal character, $\bmod p$, we have

$$
\frac{1}{A+1}\left|\sum_{a=0}^{A} \sum_{n=A+1-a}^{A+1+a} \chi(n)\right| \leq \sqrt{p}-\frac{A+1}{\sqrt{p}}
$$

Character Sums
Explicit Character Sums
Proof of main theorem
Future Work

Manitoba Scalable Sieving Unit

Recall that we are dealing with D a fundamental discriminant, i.e. either $D=L$ or $D=4 L$ where L is squarefree. We only need to consider the cases $D \equiv 1(\bmod 8)$ and $D \equiv 2,3$ $(\bmod 4)$ because $D / 2)=-1$ for $D \equiv 5(\bmod 8)$.
Running the Manitoba Scalable Sieving Unit (MSSU) for about 5 months yielded, among other things, the following information: If
(1) $L \equiv 1(\bmod 8)$ with $(L / q)=0$ or 1 for all odd $q \leq 257$,
(2) $L \equiv 2(\bmod 4)$ with $(L / q)=0$ or 1 for all odd $q \leq 283$ or
(3) $L \equiv 3(\bmod 4)$ with $(L / q)=0$ or 1 for all odd $q \leq 277$ then $L>2.6 \times 10^{17}$.

Character Sums
Explicit Character Sums
Proof of main theorem
Future Work

Counterexamples

The MSSU then allows us to know that we need only check up to $4(283)^{2}=320356$ for counterexamples below 2.6×10^{17} (or $4 \times 2.6 \times 10^{17}$ in the case of D even), for least inert primes $>\sqrt{D} / 2$. The set of counterexamples is

$$
\begin{array}{r}
S=\{5,8,12,13,17,24,28,33,40,57,60,73,76,88,97,105,120,124, \\
129,136,145,156,184,204,249,280,316,345,364,385,424,456, \\
520,561,609,616,924,940,984,1065,1596,2044,3705\} .
\end{array}
$$

Similarly for the counterexamples to least inert prime $>D^{0.45}$, we need only check up to $283^{1 / .45}=280811$. The set of counterexamples is
$S^{\prime}=\{8,12,24,28,33,40,60,105,120,156,184,204,280,364,456,520,1596\}$.

Tighter smoothed PV

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, let M, N be real numbers with $0<N \leq q$. Then

$$
\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right| \leq \frac{\phi(q)}{q} \sqrt{q}+2^{\omega(q)-1} \frac{N}{\sqrt{q}} .
$$

Applying smoothed PV to the infinite case

Let $\chi(p)=\left(\frac{D}{p}\right)$. Since D is a fundamental discriminant, χ is a primitive character of modulus D. Consider

$$
S_{\chi}(N)=\sum_{n \leq 2 N} \chi(n)\left(1-\left|\frac{n}{N}-1\right|\right)
$$

By smoothed PV, we have

$$
\left|S_{\chi}(N)\right| \leq \frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}}
$$

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{N} \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

Therefore,

$$
\frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq\left|S_{\chi}(N)\right| \geq \frac{\phi(D)}{D} N-2^{\omega(D)-2}-2 \sum_{\substack{n \leq \frac{2 N}{b} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

Now, letting $N=c \sqrt{D}$ for some constant c we get

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

Eventually we have,

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2 c}{\log B} e^{\gamma}\left(1+\frac{1}{\log ^{2}\left(\frac{2 N}{B}\right)}\right) \log \left(\frac{2 N}{B}\right) \prod_{\substack{\left.p>\frac{2 N}{} \\ p \right\rvert\, D}} \frac{p}{p-1} .
$$

For $D \geq 10^{24}$ this is a contradiction.

Hybrid Case

We have as in the previous case

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{\substack{B<p \leq \frac{2 N}{n}}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

In this case, since we don't have to worry about the infinite case, we can have a messier version of

$$
\sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

The idea is to consider 2^{13} cases, one for each possible value of (D, M) where $M=\prod_{p \leq 41} p$.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

Future Work

- Bringing the upperbound further down.
- Generalizing to D's not necessarily fundamental discriminants.
- Generalizing to other characters, not just the Kronecker symbol.
- Extending the explicit Burgess results to other modulus, not just prime modulus.

Acknowledgements

- My advisor Carl Pomerance for his guidance.
- Kannan Soundararajan for suggesting the problem to Carl.
- Bach, Booker, Burgess, Friedlander, Goldmakher, Granville, Hildebrand, Hua, Iwaniec, KIKSPC, Kowalski, Levin, MSSU, Mollin, Montgomery, Norton, Paley, Pólya, Pomerance, Soundararajan, Vaughan, Vinogradov and Williams for their work on character sums.

