The least quadratic non-residue and related problems

Enrique Treviño

Lake Forest College

L-Functions in Analytic Number Theory Collaborative Research Group Seminar January 18, 2023

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

- Every positive integer *n* is either 0,1, or 2 modulo 3.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

- Every positive integer *n* is either 0,1, or 2 modulo 3.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* is either 0,1, or 2 modulo 3.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* is either 0,1, or 2 modulo 3.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Consider the sequence

$$2, 5, 8, 11, \ldots$$

Can it contain any squares?

- Every positive integer *n* is either 0,1, or 2 modulo 3.
- If $n \equiv 0 \pmod{3}$, then $n^2 \equiv 0^2 = 0 \pmod{3}$.
- If $n \equiv 1 \pmod{3}$, then $n^2 \equiv 1^2 = 1 \pmod{3}$.
- If $n \equiv 2 \pmod{3}$, then $n^2 \equiv 2^2 = 4 \equiv 1 \pmod{3}$.

Quadratic residues and non-residues

Let *n* be a positive integer. For $q \in \{1, 2, ..., n-1\}$, we call *q* a quadratic residue mod *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise we call *q* a quadratic non-residue.

- For *n* = 3, the quadratic residue is {1} and the quadratic non-residue is 2.
- For *n* = 5, the quadratic residues are {1,4} and the quadratic non-residues are {2,3}.
- For *n* = 7, the quadratic residues are {1,2,4} and the quadratic non-residues are {3,5,6}.
- For n = p, an odd prime, there are \frac{p-1}{2} quadratic residues
 and \frac{p-1}{2} quadratic non-residues.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore p ≡ ±1 (mod 8), hence p = 7 is the first example.
- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), therefore p ≡ ±1 (mod 24), giving us p = 23 as the first example.
- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore p ≡ ±1 (mod 8), p ≡ ±1 (mod 12) and p ≡ ±1 (mod 5), therefore p ≡ ±1, ±49 (mod 120), giving us p = 71 as the first example.

・ロト ・ 理 ト ・ ヨ ト ・

э

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore p = ±1 (mod 8), hence p = 7 is the first example.
- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), therefore p ≡ ±1 (mod 24), giving us p = 23 as the first example.
- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore p ≡ ±1 (mod 8), p ≡ ±1 (mod 12) and p ≡ ±1 (mod 5), therefore p ≡ ±1, ±49 (mod 120), giving us p = 71 as the first example.

イロト 不得 とくほ とくほ とうほ

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore p = ±1 (mod 8), hence p = 7 is the first example.
- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), therefore p ≡ ±1 (mod 24), giving us p = 23 as the first example.
- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore p ≡ ±1 (mod 8), p ≡ ±1 (mod 12) and p ≡ ±1 (mod 5), therefore p ≡ ±1, ±49 (mod 120), giving us p = 71 as the first example.

イロト 不得 とくほ とくほ とうほ

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore p = ±1 (mod 8), hence p = 7 is the first example.
- For the least non-square to be > 3 we need 2 and 3 to be squares, therefore p ≡ ±1 (mod 8) and p ≡ ±1 (mod 12), therefore p ≡ ±1 (mod 24), giving us p = 23 as the first example.
- For the least non-square to be > 5 we need 2, 3 and 5 to be squares, therefore p ≡ ±1 (mod 8), p ≡ ±1 (mod 12) and p ≡ ±1 (mod 5), therefore p ≡ ±1, ±49 (mod 120), giving us p = 71 as the first example.

The least quadratic non-residue mod p

The primes that Euclid forgot Dirichlet Characters The least inert prime in a real quadratic field

р	Least quadratic non-residue	
7	3	
23	5	
71	7	
311	11	
479	13	
1559	17	
5711	19	
10559	23	
18191	29	
31391	31	
422231	37	
701399	41	
366791	43	
3818929	47	
	< □ > < □ > <	$\Xi \to + 3$

Enrique Treviño The least quadratic non-residue and related problems

æ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

• $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$

•
$$\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}.$$

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$$

- If k = log π(x)/log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロン 不得 とくほ とくほう 一日

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$
- If k = log π(x)/log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \le x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$.
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$.
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

• $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$

- If k = log π(x)/log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロン 不得 とくほ とくほ とうほ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

• $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}$.

•
$$\#\{p \le x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$

- If k = log π(x)/log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$. Soundararajan, Lamzouri and Li improved this to $g(p) \le \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}} + \epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p)$$

ヘロト ヘワト ヘビト ヘビト

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$. Soundararajan, Lamzouri and Li improved this to $g(p) \le \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p)$

・ロト ・ 理 ト ・ ヨ ト ・

э

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$. Soundararajan, Lamzouri and Li improved this to $g(p) \le \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p)$$

・ロト ・ 理 ト ・ ヨ ト ・

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

$$g(p) = O(\log p \log \log p).$$

- Under GRH, Bach showed $g(p) \le 2 \log^2 p$. Soundararajan, Lamzouri and Li improved this to $g(p) \le \log^2 p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

イロト 不得 とくほと くほとう

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{ egin{array}{ll} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \leq \begin{cases} 0.9p^{1/4} \log p & \text{if } p \equiv 1 \pmod{4}, \\ 1.1p^{1/4} \log p & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{ egin{array}{ll} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \leq \left\{ egin{array}{ll} 0.9 p^{1/4} \log p & {\it if} \ p \equiv 1 \pmod{4}, \ 1.1 p^{1/4} \log p & {\it if} \ p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (Burgess 1962)

Let g(p) be the least quadratic non-residue mod p. Let $\varepsilon > 0$. There exists p_0 such that for all primes $p \ge p_0$ we have $g(p) < p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.

Theorem (ET 2015)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

Theorem (Francis 2021)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{3872} , then $g(p) < p^{1/6}$, and if $p > 10^{82}$, $g(p) < p^{1/4}$.

Consecutive quadratic residues or non-quadratic residues

Let H(p) be the largest string of consecutive nonzero quadratic residues or quadratic non-residues modulo p. For example, with p = 7 we have that the nonzero quadratic residues are $\{1, 2, 4\}$ and the quadratic non-residues are $\{3, 5, 6\}$. Therefore H(7) = 2.

2	11(0)
р	H(p)
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4
44	

Enrique Treviño

The least quadratic non-residue and related problems

Burgess proved in 1963 that $H(p) \leq Cp^{1/4} \log p$.

Mathematician	Year	С	Restriction
Norton*	1973	2.5	p > e ¹⁵
Norton*	1973	4.1	None
Preobrazhenskaya	2009	1.85+ <i>o</i> (1)	Not explicit
McGown	2012	7.06	$p > 5 \cdot 10^{18}$
McGown	2012	7	$p > 5 \cdot 10^{55}$
ET	2012	1.495+ o(1)	Not explicit
ET	2012	1.55	<i>p</i> > 10 ¹³
ET	2017	3.38	None

*Norton didn't provide a proof for his claim.

イロト イポト イヨト イヨト

э

There are infinitely many primes

Start with $q_1 = 2$. Supposing that q_j has been defined for $1 \le j \le k$, continue the sequence by choosing a prime q_{k+1} for which

$$q_{k+1} \mid 1 + \prod_{j=1}^{\kappa} q_j.$$

Then 'at the end of the day', the list $q_1, q_2, q_3, ...$ is an infinite sequence of distinct prime numbers.

ヘロン ヘアン ヘビン ヘビン

Tree of possibilities

Enrique Treviño The least quadratic non-residue and related problems

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_1 = 2$, then define recursively q_k to be the **smallest** prime dividing $1 + q_1 q_2 \dots q_{k-1}$.
- i.e. 2, 3, 7, 43, 13, 53, 5, 6221671, 38709183810571, 139, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take q₁ = 2, then define recursively q_k to be the **largest** prime dividing 1 + q₁q₂...q_{k-1}.
- i.e. 2, 3, 7, 43, 139, 50207, 340999, 2365347734339, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, 23, 29, 31, 37, 41, 47, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- One of the results used in Booker's proof is the upper bound on g(p).

An elementary bound for g(p)

Let g(p) be the least quadratic non-residue mod p.

Theorem

 $g(p) \leq \sqrt{p} + 1.$

Proof.

Suppose g(p) = q with $q > \sqrt{p} + 1$. Let *k* be the ceiling of p/q. Then p < kq < p + q, so $kq \equiv a \mod p$ for some 0 < a < q, and therefore kq is a quadratic residue modulo *p*. Since $q > \sqrt{p} + 1$, then $p/q < \sqrt{p}$, so *k* is at most the ceiling of $\sqrt{p} < \sqrt{p} + 1 < q$. Therefore *k* is a quadratic residue modulo *p*. But if *k* and *kq* are quadratic residues modulo *p*, then *q* is a square modulo *p*. Contradiction!

An elementary bound for H(p)

- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let *k* be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

An elementary bound for H(p)

- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let k be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

An elementary bound for H(p)

- Suppose {*a* + 1, *a* + 2, ..., *a* + *H*} are all quadratic residues mod *p*.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let k be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

An elementary bound for H(p)

- Suppose { a + 1, a + 2, ..., a + H} are all quadratic residues mod p.
- For *n* a non-residue, na + n, ..., na + Hn are non-residues.
- If Hn > p, then $H(p) \le n 1$. Therefore $H(p) \le \max \{p/n, n 1, 2\sqrt{p}\}.$
- If $n \in (\sqrt{p}/2, 2\sqrt{p}]$ we have $H(p) < 2\sqrt{p}$.
- Let k be the largest integer such that $k^2 g(p) \le \sqrt{p}/2$.
- $(k + 1)^2 g(p) > 2\sqrt{p} \ge 4k^2 g(p)$ implies $(2k + 1) > 3k^2$ which is false for each $k \ge 1$. Therefore there is a non-residue in the interval $(\sqrt{p}/2, 2\sqrt{p}]$, yielding $H(p) < 2\sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_1, Q_2, ..., Q_r$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \ge 0$. Then there is another omitted prime smaller than

$$24^2 \left(\prod_{i=1}^r Q_i\right)^2$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4\sqrt{e}-1} = 0.178734..., \text{ provided that } 24^2 \text{ is also replaced by}$ a possibly larger constant.

イロン イロン イヨン イヨン

Proof Sketch

Let $X = 24^2 (\prod_{i=1}^r Q_i)^2$. Assume there is no prime missing from [2, X] besides Q_1, \ldots, Q_r . Let p be the prime in [2, X] that is last to appear in the sequence $\{q_i\}$. Let n be such that $q_n = p$. Then $1 + q_1 \ldots q_{n-1} = Q_1^{e_1} \ldots Q_r^{e_r} p^e$. Let d be the smallest number satisfying the following conditions:

(i)
$$d \equiv 1 \pmod{4}$$
,
(ii) $d \equiv -1 \pmod{Q_1 \dots Q_r}$

- (iii) $\left(\frac{a}{p}\right) = \left(\frac{-1}{p}\right).$
 - Using the Chinese Remainder Theorem and the bound on H(p) yields that $d \le X$.
 - Given the conditions on *d* and using that $d \le X$ shows that *d* is both a quadratic residue and a non-residue mod $1 + q_1q_2 \dots q_{n-1}$. Contradiction!

Legendre Symbol

$$Let\left(\frac{a}{p}\right) = \begin{cases} 0 & , & \text{if } a \equiv 0 \mod p, \\ 1 & , & \text{if } a \text{ is a square mod } p \\ -1 & , & \text{if } a \text{ is a quadratic non-residue mod } p. \end{cases}$$

$$\begin{pmatrix} a \\ p \end{pmatrix} \text{ has the following important properties:} \\ \bullet \begin{pmatrix} a \\ p \end{pmatrix} = \begin{pmatrix} a+p \\ p \end{pmatrix} \text{ for all } a. \\ \bullet \begin{pmatrix} a \\ p \end{pmatrix} \begin{pmatrix} b \\ p \end{pmatrix} = \begin{pmatrix} ab \\ p \end{pmatrix} \text{ for all } a, b. \\ \bullet \begin{pmatrix} a \\ p \end{pmatrix} \neq 0 \text{ if and only if } gcd (a, p) = 1. \end{cases}$$

Dirichlet Character

Let *n* be a positive integer.

 $\chi: \mathbb{Z} \to \mathbb{C}$ is a Dirichlet character mod *n* if the following three conditions are satisfied:

- $\chi(a+n) = \chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if gcd (a, n) = 1.

The Legendre symbol is an example of a Dirichlet character.

イロト 不得 とくほ とくほとう

E

A simple but powerful idea

Let g(p) = m be the least quadratic non-residue modulo p. Suppose $\chi(a) = \left(\frac{a}{p}\right)$ Then $\chi(n) = 1$ for n = 1, 2, 3, ..., m - 1and $\chi(m) = -1$. Therefore

$$\sum_{i=1}^m \chi(i) = m - 2 < m,$$

and

$$\sum_{i=1}^{k} \chi(i) = k \text{ for all } k < m.$$

Therefore bounding $\sum_{i=1}^{n} \chi(i)$ can give an upper bound for g(p).

Pólya–Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant *c* such that for any Dirichlet character $S(\chi) \le c\sqrt{q} \log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

The least quadratic non-residue mod p The primes that Euclid forgot Dirichlet Characters

Bindhiet Ondradter

The least inert prime in a real quadratic field

Vinogradov's Trick: Showing $g(p) \ll p^{\frac{1}{2\sqrt{e}}+\varepsilon}$

• Suppose
$$\sum_{n \le x} \chi(n) = o(x)$$
.

• Suppose
$$g(p) > y$$
.

$$\sum_{n \le x} \chi(n) = \sum_{n \le x} 1 - 2 \sum_{\substack{y < q \le x \\ \chi(q) = -1}} \sum_{n \le \frac{x}{q}} 1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \leq x} \chi(n) \geq \lfloor x \rfloor - 2 \sum_{y < q \leq x} \left\lfloor \frac{x}{q} \right\rfloor \geq x - 1 - 2x \sum_{y < q \leq x} \frac{1}{q} - 2 \sum_{y < q \leq x} 1.$$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|S_{\chi}(M,N)| = \left|\sum_{M < n \le M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

ヘロト 人間 ト ヘヨト ヘヨト

Consider

$$\sum_{n\leq N}\chi(n)\bigg|\,.$$

.

By Burgess

$$\left|\sum_{n\leq N}\chi(n)\right|\ll N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}+\epsilon}.$$

However, if $\chi(n) = 1$ for all $n \leq N$, then

$$N \leq \left| \sum_{n \leq N} \chi(n) \right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon},$$

so

$$N^{\frac{1}{r}} \ll q^{\frac{r+1}{4r^2}+\epsilon}$$

 $\mathbf{N} \ll \mathbf{a}^{\frac{1}{4} + \frac{1}{4\epsilon} + \epsilon r}$

Hence

Enrique Treviño

The least quadratic non-residue and related problems

Now we know why

 $g(p) \ll p^{rac{1}{4\sqrt{e}}+arepsilon}.$

but how do we go from there to be able to figure out the theorems:

Theorem (ET 2015)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

Theorem (Francis 2021)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{3872} , then $g(p) < p^{1/6}$, and if $p > 10^{82}$, $g(p) < p^{1/4}$.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

 $|S_{\chi}(M,N)| \le 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$

イロト 不得 とくほと くほとう

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let $r \geq$ 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

ヘロン 人間 とくほ とくほ とう

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰. Recently (2017) improved to no Norm-Euclidean fields with discriminant > 10¹⁰⁰
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰. Recently (2017) improved to no Norm-Euclidean fields with discriminant > 10¹⁰⁰
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

ヘロト ヘアト ヘビト ヘビト

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant > 10¹⁴⁰. Recently (2017) improved to no Norm-Euclidean fields with discriminant > 10¹⁰⁰
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

ヘロン 人間 とくほ とくほ とう

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $> 10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $> 10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, g^x ≡ x (mod *p*).
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

ヘロト ヘアト ヘビト ヘビト

3

The least quadratic non-residue mod p The primes that Euclid forgot

Dirichlet Characters

The least inert prime in a real quadratic field

Key Inequality to prove Burgess Inequality

Theorem (Burgess, Booker, ET)

Let h and w be positive integers. Let χ be a primitive Dirichlet character mod p, then

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} < (2w-1)!!p \, h^w + (2w-1)\sqrt{p} \, h^{2w}$$

ヘロン 人間 とくほ とくほ とう

Sketch of a Proof

٥

 $\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \mod p} \chi(q(x)),$

where

$$q(x) = \frac{(x + l_1)(x + l_2) \dots (x + l_w)}{(x + l_{w+1})(x + l_{w+2}) \dots (x + l_{2w})}$$

• If q(x) is not a *k*-th power (where *k* is the order of χ), then

$$\left|\sum_{x \mod p} \chi(q(x))\right| \leq (r-1)\sqrt{p},$$

where *r* is the number of distinct roots of *q*(*x*

Sketch of a Proof

٢

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \mod p} \chi(q(x)),$$

where

$$q(x) = \frac{(x + l_1)(x + l_2) \dots (x + l_w)}{(x + l_{w+1})(x + l_{w+2}) \dots (x + l_{2w})}$$

• If q(x) is not a *k*-th power (where *k* is the order of χ), then

$$\sum_{x \bmod p} \chi(q(x)) \leq (r-1)\sqrt{p},$$

where *r* is the number of distinct roots of q(x).

Applications

Theorem (ET 2015)

Let p > 3 be a prime and k be a positive integer that divides p - 1. Let g(p, k) be the least k-th power non-residue mod p. Then

$$g(p,k) \leq \begin{cases} 1.1p^{1/4} \log p & \text{if } p \equiv 3 \mod 4 \text{ and } k = 2, \\ 0.9p^{1/4} \log p & \text{otherwise.} \end{cases}$$

Theorem (ET 2012, 2017)

If χ is any non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H], then

$$H \le \begin{cases} 3.38p^{1/4} \log p, & \text{ for all odd } p, \\ 1.55p^{1/4} \log p, & \text{ for } p \ge 10^{13}. \end{cases}$$

ヘロア 人間 アメヨア 人口 ア

Applications

Theorem (ET 2015)

Let p > 3 be a prime and k be a positive integer that divides p - 1. Let g(p, k) be the least k-th power non-residue mod p. Then

$$g(p,k) \leq \begin{cases} 1.1p^{1/4} \log p & \text{if } p \equiv 3 \mod 4 \text{ and } k = 2, \\ 0.9p^{1/4} \log p & \text{otherwise.} \end{cases}$$

Theorem (ET 2012, 2017)

If χ is any non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H], then

ヘロト ヘワト ヘビト ヘビト

Quadratic fields and inert primes

- Let *d* be a squarefree integer.
- Then $\mathbb{Q}(\sqrt{d})$ is a quadratic field.
- A prime p ∈ Z is inert if it remains prime when it is lifted to the quadratic field.
- For example Q(√-1) = Q(i) = {a + bi | a, b ∈ Q}. In this field, the inert primes are the primes p ≡ 3 (mod 4).
- Note that 5 is not prime in Q(i) because (1 + 2i)(1 - 2i) = 5. Similarly any prime p ≡ 1 (mod 4) is not prime in Q(i) since p can be written as a² + b² for some a, b ∈ Z and hence p = (a + bi)(a - bi).

イロト 不得 とくほと くほとう

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square mod } p, \\ -1 & \text{if } a \text{ is a non-square mod } p, \\ 0 & \text{if } p \mid a. \end{cases}$$

ヘロン 人間 とくほ とくほ とう

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square mod } p, \\ -1 & \text{if } a \text{ is a non-square mod } p, \\ 0 & \text{if } p \mid a. \end{cases}$$

ヘロン 人間 とくほ とくほ とう

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square } \mod p, \\ -1 & \text{if } a \text{ is a non-square } \mod p, \\ 0 & \text{if } p \mid a. \end{cases}$$

ヘロン 人間 とくほ とくほ とう

1

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant D > 3705, there is always at least one prime $p \le \sqrt{D}/2$ such that the Kronecker symbol (D/p) = -1.

Theorem (ET, 2010)

For any positive fundamental discriminant D > 1596, there is always at least one prime $p \le D^{0.45}$ such that the Kronecker symbol (D/p) = -1.

イロト 不得 とくほ とくほ とうほ

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant D > 3705, there is always at least one prime $p \le \sqrt{D}/2$ such that the Kronecker symbol (D/p) = -1.

Theorem (ET, 2010)

For any positive fundamental discriminant D > 1596, there is always at least one prime $p \le D^{0.45}$ such that the Kronecker symbol (D/p) = -1.

ヘロン 人間 とくほ とくほ とう

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large *D*. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

ヘロト ヘワト ヘビト ヘビト

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large *D*. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

Manitoba Scalable Sieving Unit

Enrique Treviño The least quadratic non-residue and related problems

Smoothed Pólya–Vinogradov

Let *M*, *N* be real numbers with $0 < N \le q$, then define $S^*(\chi)$ as follows:

$$\mathcal{S}^*(\chi) = \max_{M,N} \left| \sum_{M \le n \le M + 2N} \chi(n) \left(1 - \left| \frac{n - M}{N} - 1 \right| \right) \right|.$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus q > 1, and let M, N be real numbers with $0 < N \le q$, then

$$S^*(\chi) \leq \sqrt{q} - rac{N}{\sqrt{q}}.$$

イロト イポト イヨト イヨト

Lower bound for the smoothed Pólya–Vinogradov

Theorem (ET, 2010)

Let χ be a primitive character to the modulus q > 1, and let M, N be real numbers with $0 < N \le q$, then

$$S^*(\chi) \geq rac{2}{\pi^2}\sqrt{q}.$$

Therefore, the order of magnitude of $S^*(\chi)$ is \sqrt{q} .

Tighter smoothed PV

Theorem (ET, 2010)

Let χ be a primitive character to the modulus q > 1, let M, N be real numbers with $0 < N \le q$. Then

$$\left|\sum_{M\leq n\leq M+2N}\chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right|\leq \frac{\phi(q)}{q}\sqrt{q}+2^{\omega(q)-1}\frac{N}{\sqrt{q}}.$$

Applying smoothed PV to the least inert prime problem

Let $\chi(p) = \left(\frac{D}{p}\right)$. Since *D* is a fundamental discriminant, χ is a primitive character of modulus *D*. Consider

$$\mathcal{S}_{\chi}(N) = \sum_{n \leq 2N} \chi(n) \left(1 - \left|\frac{n}{N} - 1\right|\right).$$

By smoothed PV, we have

$$|\mathcal{S}_{\chi}(\mathcal{N})| \leq rac{\phi(\mathcal{D})}{\mathcal{D}} \sqrt{\mathcal{D}} + 2^{\omega(\mathcal{D})-1} rac{\mathcal{N}}{\sqrt{\mathcal{D}}}.$$

<ロ> (四) (四) (三) (三) (三)

Now,

$$S_{\chi}(N) = \sum_{\substack{n \leq 2N \\ (n,D)=1}} \left(1 - \left|\frac{n}{N} - 1\right|\right) - 2\sum_{\substack{B$$

• Therefore,

$$\frac{\phi(D)}{D}\sqrt{D}+2^{\omega(D)-1}\frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D}N-2^{\omega(D)-2}-2\sum_{\substack{n\leq \frac{2N}{B}\\(n,D)=1}}\sum_{B< p\leq \frac{2N}{n}}\left(1-\left|\frac{np}{N}-1\right|\right).$$

• Now, letting $N = c\sqrt{D}$ for some constant *c* we get

$$0 \ge c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \le \frac{2N}{B} \\ (n,D)=1}} \sum_{B$$

イロト イポト イヨト イヨト

Now,

$$S_{\chi}(N) = \sum_{\substack{n \leq 2N \\ (n,D)=1}} \left(1 - \left|\frac{n}{N} - 1\right|\right) - 2\sum_{\substack{B$$

• Therefore,

$$\frac{\phi(D)}{D}\sqrt{D}+2^{\omega(D)-1}\frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D}N-2^{\omega(D)-2}-2\sum_{\substack{n\leq \frac{2N}{B}\\(n,D)=1}}\sum_{B< p\leq \frac{2N}{n}}\left(1-\left|\frac{np}{N}-1\right|\right).$$

• Now, letting $N = c\sqrt{D}$ for some constant *c* we get

$$0 \ge c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \le \frac{2N}{B} \\ (n,D)=1}} \sum_{B$$

イロト イポト イヨト イヨト

Now,

$$S_{\chi}(N) = \sum_{\substack{n \leq 2N \\ (n,D)=1}} \left(1 - \left|\frac{n}{N} - 1\right|\right) - 2\sum_{\substack{B$$

Therefore,

$$\frac{\phi(D)}{D}\sqrt{D}+2^{\omega(D)-1}\frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D}N-2^{\omega(D)-2}-2\sum_{\substack{n\leq \frac{2N}{B}\\(n,D)=1}}\sum_{B$$

• Now, letting $N = c\sqrt{D}$ for some constant *c* we get

$$0 \ge c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \le \frac{2N}{n} \\ (n,D)=1}} \sum_{B$$

イロト イポト イヨト イヨト

Eventually we have,

$$0 \geq c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2c}{\log B} e^{\gamma} \left(1 + \frac{1}{\log^2\left(\frac{2N}{B}\right)}\right) \log\left(\frac{2N}{B}\right) \prod_{\substack{p > \frac{2n}{B} \\ p \mid D}} \frac{p}{p-1}.$$

For $D \ge 10^{24}$ this is a contradiction.

イロト イポト イヨト イヨト

Hybrid Case

We have as in the previous case

$$0 \ge c - 1 - 2^{\omega(D)} \left(\frac{c}{2} + \frac{1}{4}\right) \frac{D}{\phi(D)\sqrt{D}} - \frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \le \frac{2N}{n} \\ (n,D)=1}} \sum_{B$$

In this case, since we don't have to worry about the infinite case, we can have a messier version of

$$\sum_{B$$

The idea is to consider 2^{13} cases, one for each possible value of gcd (D, M) where $M = \prod_{p \le 41} p$.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for 21853026051351495 = 2.2...×10¹⁶.
- For even values we get the theorem for 1707159924755154870 = 1.71...×10¹⁸.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for 21853026051351495 = 2.2...×10¹⁶.
- For even values we get the theorem for 1707159924755154870 = 1.71...×10¹⁸.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for 21853026051351495 = 2.2...×10¹⁶.
- For even values we get the theorem for 1707159924755154870 = 1.71...×10¹⁸.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for 21853026051351495 = 2.2...×10¹⁶.
- For even values we get the theorem for 1707159924755154870 = 1.71...×10¹⁸.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

- 4 週 ト 4 三 ト 4 三 ト

Thank you!

Enrique Treviño The least quadratic non-residue and related problems

イロト イポト イヨト イヨ