The least quadratic non-residue and related problems

Enrique Treviño
Lake Forest College

L-Functions in Analytic Number Theory Collaborative Research Group Seminar January 18, 2023

Squares

Consider the sequence
$2,5,8,11, \ldots$
Can it contain any squares?

- Every positive integer n is either 0,1 , or 2 modulo 3 .
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n is either 0,1 , or 2 modulo 3 .
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n is either 0,1 , or 2 modulo 3 .
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n is either 0,1 , or 2 modulo 3 .
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Squares

Consider the sequence

$$
2,5,8,11, \ldots
$$

Can it contain any squares?

- Every positive integer n is either 0,1 , or 2 modulo 3 .
- If $n \equiv 0(\bmod 3)$, then $n^{2} \equiv 0^{2}=0(\bmod 3)$.
- If $n \equiv 1(\bmod 3)$, then $n^{2} \equiv 1^{2}=1(\bmod 3)$.
- If $n \equiv 2(\bmod 3)$, then $n^{2} \equiv 2^{2}=4 \equiv 1(\bmod 3)$.

Quadratic residues and non-residues

Let n be a positive integer. For $q \in\{1,2, \ldots, n-1\}$, we call q a quadratic residue $\bmod n$ if there exists an integer x such that $x^{2} \equiv q(\bmod n)$. Otherwise we call q a quadratic non-residue.

- For $n=3$, the quadratic residue is $\{1\}$ and the quadratic non-residue is 2.
- For $n=5$, the quadratic residues are $\{1,4\}$ and the quadratic non-residues are $\{2,3\}$.
- For $n=7$, the quadratic residues are $\{1,2,4\}$ and the quadratic non-residues are $\{3,5,6\}$.
- For $n=p$, an odd prime, there are $\frac{p-1}{2}$ quadratic residues and $\frac{p-1}{2}$ quadratic non-residues.

Least non-square

How big can the least non-square be?

- For the least non-square to be > 2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2, 3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

Least non-square

How big can the least non-square be?

- For the least non-square to be >2 we need 2 to be a square, therefore $p \equiv \pm 1(\bmod 8)$, hence $p=7$ is the first example.
- For the least non-square to be >3 we need 2 and 3 to be squares, therefore $p \equiv \pm 1(\bmod 8)$ and $p \equiv \pm 1(\bmod 12)$, therefore $p \equiv \pm 1(\bmod 24)$, giving us $p=23$ as the first example.
- For the least non-square to be >5 we need 2,3 and 5 to be squares, therefore $p \equiv \pm 1(\bmod 8), p \equiv \pm 1(\bmod 12)$ and $p \equiv \pm 1(\bmod 5)$, therefore $p \equiv \pm 1, \pm 49(\bmod 120)$, giving us $p=71$ as the first example.

p	Least quadratic non-residue
7	3
23	5
71	7
311	11
479	13
1559	17
5711	19
10559	23
18191	29
31391	31
422231	37
701399	41
366791	43
3818929	47

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Choosing $k \approx C \log x$, since $p_{k} \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.

- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$
- If $k=\log \pi(x) / \log 2$ you would expect only one prime
satisfying $g(p)=p_{k}$.
- Choosing $k \approx C \log x$, since $p_{k} \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$
- If $k=\log \pi(x) / \log 2$ you would expect only one prime
satisfying $g(p)=p_{k}$.
- Choosing $k \approx C \log x$, since $p_{k} \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime
satisfying $g(p)=p_{k}$.
- Choosing $k \approx C \log x$, since $p_{k} \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.

Heuristics

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p_{i} be the i-th prime, i.e, $p_{1}=2, p_{2}=3, \ldots$.

- $\#\{p \leq x \mid g(p)=2\} \approx \frac{\pi(x)}{2}$.
- $\#\{p \leq x \mid g(p)=3\} \approx \frac{\pi(x)}{4}$.
- $\#\left\{p \leq x \mid g(p)=p_{k}\right\} \approx \frac{\pi(x)}{2^{k}}$.
- If $k=\log \pi(x) / \log 2$ you would expect only one prime satisfying $g(p)=p_{k}$.
- Choosing $k \approx C \log x$, since $p_{k} \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p) .
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$. Soundararajan, Lamzouri and Li improved this to $g(p) \leq \log ^{2} p$.
- Unconditionally, Burgess showed $g(p)<p^{\frac{1}{4}+\epsilon}$
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p) .
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$. Soundararajan, Lamzouri and Li improved this to $g(p) \leq \log ^{2} p$.
- Unconditionally, Burgess showed $g(p)$
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$
- In the lower bound clirection, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p) .
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$. Soundararajan, Lamzouri and Li improved this to $g(p) \leq \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is
$g(p)=\Omega(\log p \log \log \log p)$.

Theorems on the least quadratic non-residue $\bmod p$

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Our conjecture is

$$
g(p)=O(\log p \log \log p)
$$

- Under GRH, Bach showed $g(p) \leq 2 \log ^{2} p$. Soundararajan, Lamzouri and Li improved this to $g(p) \leq \log ^{2} p$.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4 \sqrt{e}}+\epsilon}$.
- $\frac{1}{4 \sqrt{e}} \approx 0.151633$.
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many p satisfying $g(p) \gg \log p \log \log \log p$, that is

$$
g(p)=\Omega(\log p \log \log \log p)
$$

Explicit estimates on the least quadratic non-residue $\bmod p$

Norton showed

$$
g(p) \leq\left\{\begin{array}{lll}
3.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
4.7 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Theorem (ET 2015)
Let $p>3$ be a prime. Let $g(p)$ be the least quadratic non-residue modp. Then

Explicit estimates on the least quadratic non-residue $\bmod p$

Norton showed

$$
g(p) \leq\left\{\begin{array}{lll}
3.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
4.7 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Theorem (ET 2015)

Let $p>3$ be a prime. Let $g(p)$ be the least quadratic non-residue $\bmod p$. Then

$$
g(p) \leq\left\{\begin{array}{lll}
0.9 p^{1 / 4} \log p & \text { if } p \equiv 1 & (\bmod 4) \\
1.1 p^{1 / 4} \log p & \text { if } p \equiv 3 & (\bmod 4)
\end{array}\right.
$$

Theorem (Burgess 1962)

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let $\varepsilon>0$. There exists p_{0} such that for all primes $p \geq p_{0}$ we have $g(p)<p^{\frac{1}{4 \sqrt{e}}+\varepsilon}$.

Theorem (ET 2015)

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p be a prime greater than 10^{4732}, then $g(p)<p^{1 / 6}$.

Theorem (Francis 2021)

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p be a prime greater than 10^{3872}, then $g(p)<p^{1 / 6}$, and if
$p>10^{82}, g(p)<p^{1 / 4}$.

Consecutive quadratic residues or non-quadratic residues

Let $H(p)$ be the largest string of consecutive nonzero quadratic residues or quadratic non-residues modulo p.
For example, with $p=7$ we have that the nonzero quadratic residues are $\{1,2,4\}$ and the quadratic non-residues are $\{3,5,6\}$. Therefore $H(7)=2$.

p	$H(p)$
11	3
13	4
17	3
19	4
23	4
29	4
31	4
37	4

Burgess proved in 1963 that $H(p) \leq C p^{1 / 4} \log p$.

Mathematician	Year	C	Restriction
Norton* *	1973	2.5	$p>e^{15}$
Norton*	1973	4.1	None
Preobrazhenskaya	2009	$1.85 \ldots+o(1)$	Not explicit
McGown	2012	7.06	$p>5 \cdot 10^{18}$
McGown	2012	7	$p>5 \cdot 10^{55}$
ET	2012	$1.495 \ldots+o(1)$	Not explicit
ET	2012	1.55	$p>10^{13}$
ET	2017	3.38	None

*Norton didn't provide a proof for his claim.

There are infinitely many primes

Start with $q_{1}=2$. Supposing that q_{j} has been defined for $1 \leq j \leq k$, continue the sequence by choosing a prime q_{k+1} for which

$$
q_{k+1} \mid 1+\prod_{j=1}^{k} q_{j}
$$

Then 'at the end of the day', the list $q_{1}, q_{2}, q_{3}, \ldots$ is an infinite sequence of distinct prime numbers.

Tree of possibilities

Euclid-Mullin sequences

Since the sequence in the previous slide is not unique, Mullin suggested two possible unique sequences.

- The first is to take $q_{1}=2$, then define recursively q_{k} to be the smallest prime dividing $1+q_{1} q_{2} \ldots q_{k-1}$.
- i.e. $2,3,7,43,13,53,5,6221671,38709183810571,139$, 2801, 11, 17, 5471, 52662739, ...
- It is conjectured that the first Mullin sequence touches all the primes eventually.
- Not much is known of this sequence.

Second Euclid-Mullin Sequence

- The second Mullin sequence is to take $q_{1}=2$, then define recursively q_{k} to be the largest prime dividing $1+q_{1} q_{2} \ldots q_{k-1}$.
- i.e. $2,3,7,43,139,50207,340999,2365347734339$, 4680225641471129,
- Cox and van der Poorten (1968) proved 5, 11, 13, 17, 19, $23,29,31,37,41,47$, and 53 are missing from the first Euclid-Mullin sequence.
- Booker in 2012 showed that infinitely many primes are missing from the sequence.
- One of the results used in Booker's proof is the upper bound on $g(p)$.

An elementary bound for $g(p)$

Let $g(p)$ be the least quadratic non-residue $\bmod p$.
Theorem

$$
g(p) \leq \sqrt{p}+1
$$

Proof.

Suppose $g(p)=q$ with $q>\sqrt{p}+1$. Let k be the ceiling of p / q. Then $p<k q<p+q$, so $k q \equiv a \bmod p$ for some $0<a<q$, and therefore $k q$ is a quadratic residue modulo p. Since $q>\sqrt{p}+1$, then $p / q<\sqrt{p}$, so k is at most the ceiling of $\sqrt{p}<\sqrt{p}+1<q$. Therefore k is a quadratic residue modulo p. But if k and $k q$ are quadratic residues modulo p, then q is a square modulo p. Contradiction!

An elementary bound for $H(p)$

Sketch of a proof that $H(p)<2 \sqrt{p}$.

- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all quadratic residues mod p.
- For n a non-residue, na $+n, \ldots$, na $+H n$ are non-residues.
- If $H n>p$, then $H(p) \leq n-1$. Therefore $H(p) \leq \max \{p / n, n-1,2 \sqrt{p}\}$.
- If $n \in(\sqrt{p} / 2,2 \sqrt{p l}$ we have $H(p)<2 \sqrt{p}$.
- Let k be the largest integer such that $k^{2} g(p) \leq \sqrt{p} / 2$.
- $(k+1)^{2} g(p)>2 \sqrt{p} \geq 4 k^{2} g(p)$ implies $(2 k+1)>3 k^{2}$ which is false for each $k \geq 1$. Therefore there is a non-residue in the interval $(\sqrt{p} / 2,2 \sqrt{p}]$, yielding $H(p)<2 \sqrt{p}$.

An elementary bound for $H(p)$

Sketch of a proof that $H(p)<2 \sqrt{p}$.

- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all quadratic residues mod p.
- For n a non-residue, $n a+n, \ldots, n a+H n$ are non-residues.
- If $H n>p$, then $H(p) \leq n-1$. Therefore

- If $n \in(\sqrt{p} / 2,2 \sqrt{p}]$ we have $H(p)<2 \sqrt{p}$.
- Let k be the largest integer such that $k^{2} g(p) \leq \sqrt{p} / 2$.

which is false for each $k \geq 1$. Therefore there is a
non-residue in the interval $(\sqrt{p} / 2,2 \sqrt{p}]$, yielding $H(p)<2 \sqrt{p}$.

An elementary bound for $H(p)$

Sketch of a proof that $H(p)<2 \sqrt{p}$.

- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all quadratic residues mod p.
- For n a non-residue, $n a+n, \ldots, n a+H n$ are non-residues.
- If $H n>p$, then $H(p) \leq n-1$. Therefore $H(p) \leq \max \{p / n, n-1,2 \sqrt{p}\}$.
- If $n \in(\sqrt{p} / 2,2 \sqrt{p}]$ we have $H(p)<2 \sqrt{p}$.
- Let k be the largest integer such that $k^{2} g(p) \leq \sqrt{p} / 2$.

which is false for each $k \geq 1$. Therefore there is a
non-residue in the interval $(\sqrt{p} / 2,2 \sqrt{p}]$, yielding
$H(p)<2 \sqrt{p}$.

An elementary bound for $H(p)$

Sketch of a proof that $H(p)<2 \sqrt{p}$.

- Suppose $\{a+1, a+2, \ldots, a+H\}$ are all quadratic residues mod p.
- For n a non-residue, $n a+n, \ldots$, $n a+H n$ are non-residues.
- If $H n>p$, then $H(p) \leq n-1$. Therefore $H(p) \leq \max \{p / n, n-1,2 \sqrt{p}\}$.
- If $n \in(\sqrt{p} / 2,2 \sqrt{p}]$ we have $H(p)<2 \sqrt{p}$.
- Let k be the largest integer such that $k^{2} g(p) \leq \sqrt{p} / 2$.
- $(k+1)^{2} g(p)>2 \sqrt{p} \geq 4 k^{2} g(p)$ implies $(2 k+1)>3 k^{2}$ which is false for each $k \geq 1$. Therefore there is a non-residue in the interval $(\sqrt{p} / 2,2 \sqrt{p}]$, yielding $H(p)<2 \sqrt{p}$.

The primes that Euclid forgot

Theorem

Let $Q_{1}, Q_{2}, \ldots Q_{r}$ be the smallest r primes omitted from the second Euclid-Mullin sequence, where $r \geq 0$. Then there is another omitted prime smaller than

$$
24^{2}\left(\prod_{i=1}^{r} Q_{i}\right)^{2}
$$

Using the deep results of Burgess, Booker showed that the exponent can be replaced with any real number larger than $\frac{1}{4 \sqrt{e}-1}=0.178734 \ldots$, provided that 24^{2} is also replaced by a possibly larger constant.

Proof Sketch

Let $X=24^{2}\left(\prod_{i=1}^{r} Q_{i}\right)^{2}$. Assume there is no prime missing from $[2, X]$ besides Q_{1}, \ldots, Q_{r}. Let p be the prime in $[2, X]$ that is last to appear in the sequence $\left\{q_{i}\right\}$. Let n be such that $q_{n}=p$.
Then $1+q_{1} \ldots q_{n-1}=Q_{1}^{e_{1}} \ldots Q_{r}^{e_{r}} p^{e}$.
Let d be the smallest number satisfying the following conditions:
(i) $d \equiv 1(\bmod 4)$,
(ii) $d \equiv-1\left(\bmod Q_{1} \ldots Q_{r}\right)$
(iii) $\left(\frac{d}{p}\right)=\left(\frac{-1}{p}\right)$.

- Using the Chinese Remainder Theorem and the bound on $H(p)$ yields that $d \leq X$.
- Given the conditions on d and using that $d \leq X$ shows that d is both a quadratic residue and a non-residue mod $1+q_{1} q_{2} \ldots q_{n-1}$. Contradiction!

Legendre Symbol

$\operatorname{Let}\left(\frac{a}{p}\right)= \begin{cases}0, & \text { if } a \equiv 0 \bmod p, \\ 1, & \text { if } a \text { is a square } \bmod p \\ -1, & \text { if } a \text { is a quadratic non-residue } \bmod p .\end{cases}$
$\left(\frac{a}{p}\right)$ has the following important properties:

- $\left(\frac{a}{p}\right)=\left(\frac{a+p}{p}\right)$ for all a.
- $\left(\frac{a}{p}\right)\left(\frac{b}{p}\right)=\left(\frac{a b}{p}\right)$ for all a, b.
- $\left(\frac{a}{p}\right) \neq 0$ if and only if $\operatorname{gcd}(a, p)=1$.

Dirichlet Character

Let n be a positive integer.
$\chi: \mathbb{Z} \rightarrow \mathbb{C}$ is a Dirichlet character $\bmod n$ if the following three conditions are satisfied:

- $\chi(a+n)=\chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(a b)=\chi(a) \chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if $\operatorname{gcd}(a, n)=1$.

The Legendre symbol is an example of a Dirichlet character.

A simple but powerful idea

Let $g(p)=m$ be the least quadratic non-residue modulo p.
Suppose $\chi(a)=\left(\frac{a}{p}\right)$ Then $\chi(n)=1$ for $n=1,2,3, \ldots, m-1$ and $\chi(m)=-1$. Therefore

$$
\sum_{i=1}^{m} \chi(i)=m-2<m
$$

and

$$
\sum_{i=1}^{k} \chi(i)=k \text { for all } k<m
$$

Therefore bounding $\sum_{i=1}^{n} \chi(i)$ can give an upper bound for $g(p)$.

Pólya-Vinogradov

Let χ be a Dirichlet character to the modulus $q>1$. Let

$$
S(\chi)=\max _{M, N}\left|\sum_{n=M+1}^{M+N} \chi(n)\right|
$$

The Pólya-Vinogradov inequality (1918) states that there exists an absolute universal constant c such that for any Dirichlet character $S(\chi) \leq c \sqrt{q} \log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Vinogradov's Trick: Showing $g(p) \ll p^{\frac{1}{2 \sqrt{e}}+\varepsilon}$

- Suppose $\sum_{n \leq x} \chi(n)=o(x)$.
- Let $y=x^{1 / \sqrt{e}+\delta}$ for some $\delta>0$. So $\log \log x-\log \log y=\log (1 / \sqrt{e}+\delta)<1 / 2$
- Suppose $g(p)>y$.

$$
\sum_{n \leq x} \chi(n)=\sum_{n \leq x} 1-2 \sum_{\substack{y<q \leq x \\ \chi(q)=-1}} \sum_{n \leq \frac{x}{q}} 1
$$

where the sum ranges over q prime. Therefore we have

$$
\sum_{n \leq x} \chi(n) \geq\lfloor x\rfloor-2 \sum_{y<q \leq x}\left\lfloor\frac{x}{q}\right\rfloor \geq x-1-2 x \sum_{y<q \leq x} \frac{1}{q}-2 \sum_{y<q \leq x} 1
$$

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where $q>1, r$ is a positive integer and $\epsilon>0$ is a real number. Then

$$
\left|S_{\chi}(M, N)\right|=\left|\sum_{M<n \leq M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\epsilon}
$$

for $r=1,2,3$ and for any $r \geq 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Consider

$$
\left|\sum_{n \leq N} \chi(n)\right|
$$

By Burgess

$$
\left|\sum_{n \leq N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{r^{2}}+\epsilon} .
$$

However, if $\chi(n)=1$ for all $n \leq N$, then

$$
N \leq\left|\sum_{n \leq N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4 r^{2}}+\epsilon},
$$

so

$$
N^{\frac{1}{r}} \ll q^{\frac{r+1}{4 r^{2}}+\epsilon} .
$$

Hence

Now we know why

$$
g(p) \ll p^{\frac{1}{4 \sqrt{e}}+\varepsilon},
$$

but how do we go from there to be able to figure out the theorems:

Theorem (ET 2015)

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p be a prime greater than 10^{4732}, then $g(p)<p^{1 / 6}$.

Theorem (Francis 2021)

Let $g(p)$ be the least quadratic non-residue $\bmod p$. Let p be a prime greater than 10^{3872}, then $g(p)<p^{1 / 6}$, and if $p>10^{82}, g(p)<p^{1 / 4}$.

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with $N \geq 1$ and let $r \geq 2$, then

$$
\left|S_{\chi}(M, N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{r^{2}}}(\log p)^{\frac{1}{r}} .
$$

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character $\bmod p$ (a prime). Let M and N be non-negative integers with $N \geq 1$ and let $r \geq 2$, then

$$
\left|S_{\chi}(M, N)\right| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{r^{2}}}(\log p)^{\frac{1}{r}} .
$$

Theorem (ET, 2015)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \geq 1$ and let r be a positive integer. Then for $p \geq 10^{7}$, we have

$$
\left|S_{\chi}(M, N)\right| \leq 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4 r^{2}}}(\log p)^{\frac{1}{r}}
$$

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $>10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $>10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x(\bmod p)$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $>10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $>10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture
of Brizolis that for every prime $p>3$ there is a primitive
root g and an integer $x \in[1, p-1]$ with $\log _{a} x=x$, that is,
$g^{x} \equiv x(\bmod p)$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $>10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $>10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x(\bmod p)$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $>10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $>10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime $p>3$ there is a primitive root g and an integer $x \in[1, p-1]$ with $\log _{g} x=x$, that is, $g^{x} \equiv x(\bmod p)$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Key Inequality to prove Burgess Inequality

Theorem (Burgess, Booker, ET)

Let h and w be positive integers. Let χ be a primitive Dirichlet character $\bmod p$, then

$$
\sum_{m=1}^{p}\left|\sum_{l=0}^{n-1} \chi(m+l)\right|^{2 w}<(2 w-1)!!p h^{w}+(2 w-1) \sqrt{p} h^{2 w}
$$

Sketch of a Proof

$$
\sum_{m=1}^{p}\left|\sum_{l=0}^{h-1} \chi(m+l)\right|^{2 w}=\sum_{l_{1}, l_{2}, \ldots, l_{2 w} x \bmod p} \sum \chi(q(x))
$$

where

$$
q(x)=\frac{\left(x+I_{1}\right)\left(x+I_{2}\right) \ldots\left(x+I_{w}\right)}{\left(x+I_{w+1}\right)\left(x+I_{w+2}\right) \ldots\left(x+I_{2 w}\right)}
$$

- If $q(x)$ is not a k-th power (where k is the order of χ), then

Sketch of a Proof

$$
\sum_{m=1}^{p}\left|\sum_{l=0}^{h-1} \chi(m+l)\right|^{2 w}=\sum_{l_{1}, l_{2}, \ldots, l_{2 w} x \bmod p} \sum \chi(q(x))
$$

where

$$
q(x)=\frac{\left(x+I_{1}\right)\left(x+I_{2}\right) \ldots\left(x+I_{w}\right)}{\left(x+I_{w+1}\right)\left(x+I_{w+2}\right) \ldots\left(x+I_{2 w}\right)}
$$

- If $q(x)$ is not a k-th power (where k is the order of χ), then

$$
\left|\sum_{x \bmod p} \chi(q(x))\right| \leq(r-1) \sqrt{p}
$$

where r is the number of distinct roots of $q(x)$.

Applications

Theorem (ET 2015)

Let $p>3$ be a prime and k be a positive integer that divides $p-1$. Let $g(p, k)$ be the least k-th power non-residue $\bmod p$. Then

$$
g(p, k) \leq\left\{\begin{array}{cc}
1.1 p^{1 / 4} \log p & \text { if } p \equiv 3 \bmod 4 \text { and } k=2, \\
0.9 p^{1 / 4} \log p & \text { otherwise } .
\end{array}\right.
$$

Theorem (ET 2012, 2017)
If χ is any non-principal Dirichlet character to the prime modulus p which is constant on ($\mathrm{N}, \mathrm{N}+\mathrm{H}$], then

Applications

Theorem (ET 2015)

Let $p>3$ be a prime and k be a positive integer that divides $p-1$. Let $g(p, k)$ be the least k-th power non-residue $\bmod p$. Then

$$
g(p, k) \leq\left\{\begin{array}{cc}
1.1 p^{1 / 4} \log p & \text { if } p \equiv 3 \bmod 4 \text { and } k=2, \\
0.9 p^{1 / 4} \log p & \text { otherwise } .
\end{array}\right.
$$

Theorem (ET 2012, 2017)

If χ is any non-principal Dirichlet character to the prime modulus p which is constant on $(N, N+H]$, then

$$
H \leq \begin{cases}3.38 p^{1 / 4} \log p, & \text { for all odd } p \\ 1.55 p^{1 / 4} \log p, & \text { for } p \geq 10^{13}\end{cases}
$$

Quadratic fields and inert primes

- Let d be a squarefree integer.
- Then $\mathbb{Q}(\sqrt{d})$ is a quadratic field.
- A prime $p \in \mathbb{Z}$ is inert if it remains prime when it is lifted to the quadratic field.
- For example $\mathbb{Q}(\sqrt{-1})=\mathbb{Q}(i)=\{a+b i \mid a, b \in \mathbb{Q}\}$. In this field, the inert primes are the primes $p \equiv 3(\bmod 4)$.
- Note that 5 is not prime in $\mathbb{Q}(i)$ because $(1+2 i)(1-2 i)=5$. Similarly any prime $p \equiv 1(\bmod 4)$ is not prime in $\mathbb{Q}(i)$ since p can be written as $a^{2}+b^{2}$ for some $a, b \in \mathbb{Z}$ and hence $p=(a+b i)(a-b i)$.

The least inert prime in a real quadratic field

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ $(\bmod 4)$ and $4 d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{ })$ if and only if the Kronecker symbol $(D / p)=-1$
- The Kronecker symbol is a generalization of the Legendre symbol

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ $(\bmod 4)$ and $4 d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker $\operatorname{symbol}(D / p)=-1$.
- The Kronecker symbol is a generalization of the Legendre symbol

Characterization of inert primes in quadratic fields

- The discriminant D of a quadratic field $\mathbb{Q}(\sqrt{d})$ is d if $d \equiv 1$ $(\bmod 4)$ and $4 d$ otherwise.
- A prime p is inert in $\mathbb{Q}(\sqrt{d})$ if and only if the Kronecker symbol $(D / p)=-1$.
- The Kronecker symbol is a generalization of the Legendre symbol

$$
\left(\frac{a}{p}\right)=\left\{\begin{array}{cc}
1 & \text { if } a \text { is a square } \bmod p \\
-1 & \text { if } a \text { is a non-square } \bmod p \\
0 & \text { if } p \mid a
\end{array}\right.
$$

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D>3705$, there is always at least one prime $p \leq \sqrt{D} / 2$ such that the Kronecker symbol $(D / p)=-1$.

Theorem (ET, 2010)
For any positive fundamental discriminant $D>1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker symbol $(D / p)=-1$

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant $D>3705$, there is always at least one prime $p \leq \sqrt{D} / 2$ such that the Kronecker $\operatorname{symbol}(D / p)=-1$.

Theorem (ET, 2010)

For any positive fundamental discriminant $D>1596$, there is always at least one prime $p \leq D^{0.45}$ such that the Kronecker symbol $(D / p)=-1$.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case" i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill
in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large D. The tool used by Granville et al. was the Pólya-Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya-Vinogradov plus a bit of clever computing to fill in the gap.

The least inert prime in a real quadratic field

Manitoba Scalable Sieving Unit

Smoothed Pólya-Vinogradov

Let M, N be real numbers with $0<N \leq q$, then define $S^{*}(\chi)$ as follows:

$$
S^{*}(\chi)=\max _{M, N}\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right| .
$$

Theorem (Levin, Pomerance, Soundararajan, 2009)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \leq \sqrt{q}-\frac{N}{\sqrt{q}}
$$

Lower bound for the smoothed Pólya-Vinogradov

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, and let M, N be real numbers with $0<N \leq q$, then

$$
S^{*}(\chi) \geq \frac{2}{\pi^{2}} \sqrt{q}
$$

Therefore, the order of magnitude of $S^{*}(\chi)$ is \sqrt{q}.

Tighter smoothed PV

Theorem (ET, 2010)

Let χ be a primitive character to the modulus $q>1$, let M, N be real numbers with $0<N \leq q$. Then

$$
\left|\sum_{M \leq n \leq M+2 N} \chi(n)\left(1-\left|\frac{n-M}{N}-1\right|\right)\right| \leq \frac{\phi(q)}{q} \sqrt{q}+2^{\omega(q)-1} \frac{N}{\sqrt{q}} .
$$

Applying smoothed PV to the least inert prime problem

Let $\chi(p)=\left(\frac{D}{p}\right)$. Since D is a fundamental discriminant, χ is a primitive character of modulus D. Consider

$$
S_{\chi}(N)=\sum_{n \leq 2 N} \chi(n)\left(1-\left|\frac{n}{N}-1\right|\right) .
$$

By smoothed PV, we have

$$
\left|S_{\chi}(N)\right| \leq \frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} .
$$

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{p} \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

- Now, letting $N=c \sqrt{D}$ for some constant c we get

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq \frac{2 N}{D} \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

$$
\frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N-2^{\omega(D)-2}-2 \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Now, letting $N=c \sqrt{D}$ for some constant c we get

Now,

$$
S_{\chi}(N)=\sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n}{N}-1\right|\right)-2 \sum_{\substack{B<p \leq 2 N \\ \chi(p)=-1}} \sum_{\substack{n \leq 2 N \\(n, D)=1}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

- Therefore,

$$
\frac{\phi(D)}{D} \sqrt{D}+2^{\omega(D)-1} \frac{N}{\sqrt{D}} \geq \frac{\phi(D)}{D} N-2^{\omega(D)-2}-2 \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

- Now, letting $N=c \sqrt{D}$ for some constant c we get

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{b} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

Eventually we have,

$0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2 c}{\log B} e^{\gamma}\left(1+\frac{1}{\log ^{2}\left(\frac{2 N}{B}\right)}\right) \log \left(\frac{2 N}{B}\right) \prod_{\substack{\left.p>\frac{2 N}{} \\ p \right\rvert\, D}} \frac{p}{p-1}$.
For $D \geq 10^{24}$ this is a contradiction.

Hybrid Case

We have as in the previous case

$$
0 \geq c-1-2^{\omega(D)}\left(\frac{c}{2}+\frac{1}{4}\right) \frac{D}{\phi(D) \sqrt{D}}-\frac{2}{\sqrt{D}} \frac{D}{\phi(D)} \sum_{\substack{n \leq \frac{2 N}{B} \\(n, D)=1}} \sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right)
$$

In this case, since we don't have to worry about the infinite case, we can have a messier version of

$$
\sum_{B<p \leq \frac{2 N}{n}}\left(1-\left|\frac{n p}{N}-1\right|\right) .
$$

The idea is to consider 2^{13} cases, one for each possible value of $\operatorname{gcd}(D, M)$ where $M=\prod_{p \leq 41} p$.

- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71$
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- We consider the odd values and the even values separately. For odd values, the strategy of checking all the cases proves the theorem for $21853026051351495=2.2 \ldots \times 10^{16}$.
- For even values we get the theorem for $1707159924755154870=1.71 \ldots \times 10^{18}$.
- Here we need a little extra work, we find that there are 12 outstanding cases and we deal with them one at a time.
- QED.

Thank you!

