KEVIN KUPIEC 2017 – MARINA RAWLINGS 2017 EXPERIMENTAL MATHEMATICS – PROFESSOR ENRIQUE TREVIÑO LAKE FOREST COLLEGE – RICHTER SCHOLAR PROGRAM – SUMMER 2014

LAKE FOREST COLLEGE

- 2013 study by Aragón Artacho, Bailey, Borwein, & Borwein
- Used random walks and other graphical methods to examine the normality of mathematical constants, such as e, π , Champernowne's number etc.
 - Also examined the walks of bounded rational numbers

People typically think of numbers in Base 10

{0, 1, 2, 3, 4, 5, 6, 7, 8, 9}

For the purpose of our project, we chose to use Base 4 {0, 1, 2, 3}

Why?

We can code them as the cardinal directions (N, S, E, W) 0 = east / right 1 = north / up 2 = west / left 3 = south / down

<u>xample in Base 4:</u>	104909049 4/419636198	F
19636198 (base 10)	26227262 4/104909049	F
Start with base 10	6556815 4/26227262	F
number and divide	1639203 4/6556815	F
(in this case, base 4)	409800 4/1639203	F
Note the remainder	102450 4/409800	F
number by the	25612 4/102450	F
desired base again	6403 4/25612	F
and note the	<u>1600</u> 4/6403	F
remainders until you	400 4/1600	F
(x/y = 0 R x)	100 4/400	F
Read the remainders	25 4/100	F
the base conversion	6 4/25	F
121000302033212	$4\sqrt{6}$	F
(base 4)	0 4/1	F
	0 7 C T	

Depending on the base used in the random walk, each number is assigned a direction that the computer is told to move one unit in when it appears in a rational number (which could be "randomly" generated or a specific input).

Random Kalks

represent each letter of the alphabet.

Rather than looking first for the numbers that gave us the desired random walk, we worked backwards from base 4 and converted the desired walks into base 10 quotients.

≈ 0.501674

We then wrote a code that would allow us to combine the letters to print words and phrases

*

```
× 🔅
                                                              WriteWord[word , m ] :=
c[" "] = {rspace, nspace};
                                                               Module [\{x, n, b = 4, w = 8, \}
                                                                  letters = Characters[word] },
randomWalk[\mathbf{x}, b, n] := Module[{list = {{0, 0}},
   point = \{0, 0\},\
                                                                x =
   digits = RealDigits[x, b, n][[1]]},
                                                                  (Sum[c[letters[[i]]][[1]] /
                                                                       (4^ (Sum[c[letters[[j]]][[2]] + w,
  Do[
                                                                           {j, 1, i - 1}])), {i, 1, Length[letters]}]
   point[[1]] =
                                                                    (2 /
    point[[1]] + N[Cos[(2 Pi / b) * digits[[i]]]];
                                                                       4^ (Sum[c[letters[[j]]][[2]] + w,
   point[[2]] =
                                                                            {j, 1, Length[letters]}] - w))
    point[[2]] + N[Sin[(2 Pi / b) * digits[[i]]]];
                                                                     (1 - 1 / 4^ ((Length[letters] - 1) w)) / 3);
   AppendTo[list, point]
                                                                n = Sum[c[letters[[i]]][[2]],
    , {i, 1, Length[digits]}
  1;
                                                                    {i, 1, Length[letters]}] +
  ListLinePlot[list, Axes → False,
                                                                   2 (Length[letters] - 1) w;
                                                                x = x * 4^n / (4^n - 1);
   AspectRatio \rightarrow Automatic]
                                                                randomWalk[x, b, n]
                                                                  Print[{x, n}]]
                                                    160%
                                                                                                                   160%
```


Aragón Artacho, F. J., Bailey, D. H., Borwein, J. M., & Borwein, P. B. (2013). Walking on real numbers.