The least quadratic non-residue and related problems

Enrique Treviño

Lake Forest College

Séminaire Dynamique, Arithmétique, Combinatoire March 28, 2017

Enrique Treviño The least quadratic non-residue and related problems

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

• No, because $x^2 \not\equiv 2 \mod 3$ for any x.

Consider the sequence

 $2,5,8,11,\ldots$

Can it contain any squares?

• No, because
$$x^2 \neq 2 \mod 3$$
 for any x.

イロト イポト イヨト イヨト

э

Quadratic residues and non-residues

Let *n* be a positive integer. For $q \in \{0, 1, 2, ..., n-1\}$, we call *q* a quadratic residue mod *n* if there exists an integer *x* such that $x^2 \equiv q \pmod{n}$. Otherwise we call *q* a quadratic non-residue.

- For *n* = 3, the quadratic residues are {0, 1} and the quadratic non-residue is 2.
- For *n* = 5, the quadratic residues are {0, 1, 4} and the quadratic non-residues are {2, 3}.
- For *n* = 7, the quadratic residues are {0,1,2,4} and the quadratic non-residues are {3,5,6}.
- For n = p, an odd prime, there are ^{p+1}/₂ quadratic residues and ^{p-1}/₂ quadratic non-residues.

イロン 不良 とくほう 不良 とうほ

Least quadratic non-residue

How big can the least quadratic non-residue be? Let g(p) be the least quadratic non-residue modulo p.

p	Least quadratic non-residue
3	2
5	2
7	3
11	2
13	2
17	3
19	2
23	5
29	2
31	3

★ E → < E →</p>

р	Least quadratic non-residue		
7	3		
23	5		
71	7		
311	11		
479	13		
1559	17		
5711	19		
10559	23		
18191	29		
31391	31		
422231	37		
701399	41		
366791	43		
3818929	47		

Enrique Treviño The least quadratic non-residue and related problems

▲口 → ▲圖 → ▲ 国 → ▲ 国 →

æ

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

• $\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}.$$

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

- $\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$
- $\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}.$
- $\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$
- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロト イポト イヨト イヨト

E

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}.$$

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \le x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

<ロ> (四) (四) (三) (三) (三)

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 三目 のへで

Heuristics

Let g(p) be the least quadratic non-residue mod p. Let p_i be the *i*-th prime, i.e, $p_1 = 2, p_2 = 3, ...$

•
$$\#\{p \leq x \mid g(p) = 2\} \approx \frac{\pi(x)}{2}.$$

•
$$\#\{p \leq x \mid g(p) = 3\} \approx \frac{\pi(x)}{4}$$
.

•
$$\#\{p \leq x \mid g(p) = p_k\} \approx \frac{\pi(x)}{2^k}$$
.

- If k = log π(x)/ log 2 you would expect only one prime satisfying g(p) = p_k.
- Choosing $k \approx C \log x$, since $p_k \sim k \log k$ we have $g(x) \leq C \log x \log \log x$.

イロト 不得 とくほ とくほ とうほ

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{\theta}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

ヘロト ヘワト ヘビト ヘビト

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}} + \epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

ヘロン ヘアン ヘビン ヘビン

Theorems on the least quadratic non-residue modp

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.
- $\frac{1}{4\sqrt{e}} \approx 0.151633.$
- In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

 $g(p) = \Omega(\log p \log \log \log p).$

イロン 不良 とくほう 不良 とうほ

Theorems on the least quadratic non-residue mod p

Let g(p) be the least quadratic non-residue mod p. Our conjecture is

 $g(p) = O(\log p \log \log p).$

- Under GRH, Bach showed g(p) ≤ 2 log² p. Soundararajan, Lamzouri and Li improved this to g(p) ≤ log² p.
- Unconditionally, Burgess showed $g(p) \ll_{\epsilon} p^{\frac{1}{4\sqrt{e}}+\epsilon}$.

•
$$\frac{1}{4\sqrt{e}} \approx 0.151633.$$

 In the lower bound direction, Graham and Ringrose proved that there are infinitely many *p* satisfying *g*(*p*) ≫ log *p* log log log *p*, that is

$$g(p) = \Omega(\log p \log \log \log p).$$

イロト 不得 とくほと くほとう

-

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{egin{array}{cc} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \le \begin{cases} 0.9p^{1/4}\log p & \text{if } p \equiv 1 \pmod{4}, \\ 1.1p^{1/4}\log p & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$

Explicit estimates on the least quadratic non-residue mod *p*

Norton showed

$$g(p) \leq \left\{egin{array}{cc} 3.9 p^{1/4} \log p & ext{if } p \equiv 1 \pmod{4}, \ 4.7 p^{1/4} \log p & ext{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (ET 2015)

Let p > 3 be a prime. Let g(p) be the least quadratic non-residue mod p. Then

$$g(p) \leq \left\{ egin{array}{cc} 0.9 p^{1/4} \log p & \mbox{if } p \equiv 1 \pmod{4}, \ 1.1 p^{1/4} \log p & \mbox{if } p \equiv 3 \pmod{4}. \end{array}
ight.$$

Theorem (Burgess 1962)

Let g(p) be the least quadratic non-residue mod p. Let $\varepsilon > 0$. There exists p_0 such that for all primes $p \ge p_0$ we have $g(p) < p^{\frac{1}{4\sqrt{e}} + \varepsilon}$.

Theorem (ET 2015)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

Consecutive quadratic residues or non-quadratic residues

Let H(p) be the largest string of consecutive nonzero quadratic residues or quadratic non-residues modulo p. For example, with p = 7 we have that the nonzero quadratic residues are $\{1, 2, 4\}$ and the quadratic non-residues are $\{3, 5, 6\}$. Therefore H(7) = 2.

р	H(p)
11	3
13	4
17	3
19	4
23	4
29	4
31	4

Enrique Treviño

The least quadratic non-residue and related problems

Burgess proved in 1963 that $H(p) \leq Cp^{1/4} \log p$.

Mathematician	Year	С	Restriction
Norton*	1973	2.5	p > e ¹⁵
Norton*	1973	4.1	None
Preobrazhenskaya	2009	1.85+ <i>o</i> (1)	Not explicit
McGown	2012	7.06	$p > 5 \cdot 10^{18}$
McGown	2012	7	$p > 5 \cdot 10^{55}$
ET	2012	1.495 + o(1)	Not explicit
ET	2012	1.55	<i>p</i> > 10 ¹³
ET	2012	3.64	None

*Norton didn't provide a proof for his claim.

イロト イポト イヨト イヨト

э

Quadratic fields and inert primes

- Let *d* be a squarefree integer.
- Then $\mathbb{Q}(\sqrt{d})$ is a quadratic field.
- A prime p ∈ Z is inert if it remains prime when it is lifted to the quadratic field.
- For example Q(√-1) = Q(i) = {a + bi | a, b ∈ Q}. In this field, the inert primes are the primes p ≡ 3 (mod 4).
- Note that 5 is not prime in Q(i) because (1+2i)(1-2i) = 5. Similarly any prime p ≡ 1 (mod 4) is not prime in Q(i) since p can be written as a² + b² for some a, b ∈ Z and hence p = (a + bi)(a - bi).

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square } \mod p, \\ -1 & \text{if } a \text{ is a quadratic non-residue } \mod p, \\ 0 & \text{if } p \mid a. \end{cases}$$

イロン 不良 とくほう 不良 とうほ

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square mod } p, \\ -1 & \text{if } a \text{ is a quadratic non-residue mod } p, \\ 0 & \text{if } p \mid a. \end{cases}$$

Characterization of inert primes in quadratic fields

- The discriminant *D* of a quadratic field $\mathbb{Q}(\sqrt{d})$ is *d* if $d \equiv 1 \pmod{4}$ and 4d otherwise.
- A prime *p* is inert in Q(√*d*) if and only if the Kronecker symbol (*D*/*p*) = −1.
- The Kronecker symbol is a generalization of the Legendre symbol

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a square } \mod p, \\ -1 & \text{if } a \text{ is a quadratic non-residue } \mod p, \\ 0 & \text{if } p \mid a. \end{cases}$$

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant D > 3705, there is always at least one prime $p \le \sqrt{D}/2$ such that the Kronecker symbol (D/p) = -1.

Theorem (ET, 2010)

For any positive fundamental discriminant D > 1596, there is always at least one prime $p \le D^{0.45}$ such that the Kronecker symbol (D/p) = -1.

The least inert prime in a real quadratic field

Theorem (Granville, Mollin and Williams, 2000)

For any positive fundamental discriminant D > 3705, there is always at least one prime $p \le \sqrt{D}/2$ such that the Kronecker symbol (D/p) = -1.

Theorem (ET, 2010)

For any positive fundamental discriminant D > 1596, there is always at least one prime $p \le D^{0.45}$ such that the Kronecker symbol (D/p) = -1.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large *D*. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large *D*. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

Elements of the Proof

- Use a computer to check the "small" cases. Granville, Mollin and Williams used the Manitoba Scalable Sieving Unit.
- Use analytic techniques to prove it for the "infinite case", i.e. the very large *D*. The tool used by Granville et al. was the Pólya–Vinogradov inequality. I used a "smoothed" version of it.
- Use Pólya–Vinogradov plus a bit of clever computing to fill in the gap.

Manitoba Scalable Sieving Unit

Enrique Treviño The least quadratic non-residue and related problems

 The least inert prime in a real quadratic field **Dirichlet Characters**

Legendre Symbol

$$\int 0 \quad , \quad \text{if } a \equiv 0 \mod p,$$

Let
$$\left(\frac{a}{b}\right) = \begin{cases} 1 & , & \text{if } a \text{ is a square mod } p \end{cases}$$

 $f\left(\frac{a}{p}\right) = \begin{cases} 1 & , & \text{if } a \text{ is a square mou } p \\ -1 & , & \text{if } a \text{ is a quadratic non-residue mod } p. \end{cases}$ has the following important properties:

•
$$\left(\frac{a}{p}\right) = \left(\frac{a+p}{p}\right)$$
 for all a .
• $\left(\frac{a}{p}\right) \left(\frac{b}{p}\right) = \left(\frac{ab}{p}\right)$ for all a, b .
• $\left(\frac{a}{p}\right) \neq 0$ if and only if $gcd(a, p) = 1$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Dirichlet Character

Let *n* be a positive integer.

 $\chi:\mathbb{Z}\to\mathbb{C}$ is a Dirichlet character mod *n* if the following three conditions are satisfied:

- $\chi(a+n) = \chi(a)$ for all $a \in \mathbb{Z}$.
- $\chi(ab) = \chi(a)\chi(b)$ for all $a, b \in \mathbb{Z}$.
- $\chi(a) \neq 0$ if and only if gcd (a, n) = 1.

The Legendre symbol is an example of a Dirichlet character.

イロト 不得 とくほ とくほとう

A simple but powerful idea

Let
$$g(p) = m$$
 be the least quadratic non-residue modulo p .
Suppose $\chi(a) = \left(\frac{a}{p}\right)$ Then $\chi(n) = 1$ for $n = 1, 2, 3, ..., m - 1$
and $\chi(m) = -1$. Therefore

$$\sum_{i=1}^m \chi(i) = m - 2 < m,$$

and

$$\sum_{i=1}^k \chi(i) = k \text{ for all } k < m.$$

Therefore bounding $\sum_{i=1}^{n} \chi(i)$ can give an upper bound for g(p).

Pólya–Vinogradov

Let χ be a Dirichlet character to the modulus q > 1. Let

$$S(\chi) = \max_{M,N} \left| \sum_{n=M+1}^{M+N} \chi(n) \right|$$

The Pólya–Vinogradov inequality (1918) states that there exists an absolute universal constant *c* such that for any Dirichlet character $S(\chi) \le c\sqrt{q} \log q$.

Under GRH, Montgomery and Vaughan showed that $S(\chi) \ll \sqrt{q} \log \log q$.

Paley showed in 1932 that there are infinitely many quadratic characters such that $S(\chi) \gg \sqrt{q} \log \log q$.

Vinogradov's Trick: Showing $g(p) \ll p^{\frac{1}{2\sqrt{e}}+\varepsilon}$

• Suppose
$$\sum_{n \le x} \chi(n) = o(x)$$
.

Let y = x^{1/√e+δ} for some δ > 0. So log log x − log log y = log (1/√e + δ) < 1/2

• Suppose
$$g(p) > y$$
.

$$\sum_{n \le x} \chi(n) = \sum_{n \le x} 1 - 2 \sum_{\substack{y < q \le x \\ \chi(q) = -1}} \sum_{n \le \frac{x}{q}} 1,$$

where the sum ranges over q prime. Therefore we have

$$\sum_{n \le x} \chi(n) \ge \lfloor x \rfloor - 2 \sum_{y < q \le x} \left\lfloor \frac{x}{q} \right\rfloor \ge x - 1 - 2x \sum_{y < q \le x} \frac{1}{q} - 2 \sum_{y < q \le x} 1.$$

ヘロン 人間 とくほ とくほ とう

1

It took almost 50 years before the next breakthrough. It came from the following theorem of Burgess:

Theorem (Burgess, 1962)

Let χ be a primitive character mod q, where q > 1, r is a positive integer and $\epsilon > 0$ is a real number. Then

$$|S_{\chi}(M,N)| = \left|\sum_{M < n \le M+N} \chi(n)\right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon}$$

for r = 1, 2, 3 and for any $r \ge 1$ if q is cubefree, the implied constant depending only on ϵ and r.

Consider

$$\left|\sum_{n\leq N}\chi(n)\right|.$$

By Burgess

$$\left|\sum_{n\leq N}\chi(n)\right|\ll N^{1-\frac{1}{r}}q^{\frac{r+1}{4r^2}+\epsilon}.$$

However, if $\chi(n) = 1$ for all $n \leq N$, then

$$N \leq \left| \sum_{n \leq N} \chi(n) \right| \ll N^{1-\frac{1}{r}} q^{\frac{r+1}{4r^2}+\epsilon},$$

S0

$$N^{\frac{1}{r}} \ll q^{\frac{r+1}{4r^2}+\epsilon}$$

 $N \ll q^{\frac{1}{4} + \frac{1}{4r} + \epsilon r}.$

Hence

イロト 不得 トイヨト イヨト 二日

Now we know why

$$g(p) \ll p^{rac{1}{4\sqrt{e}}+arepsilon},$$

but how do we go from there to be able to figure out the theorem:

Theorem (ET 2015)

Let g(p) be the least quadratic non-residue mod p. Let p be a prime greater than 10^{4732} , then $g(p) < p^{1/6}$.

イロト イポト イヨト イヨト

3

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let r \geq 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \le 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Explicit Burgess

Theorem (Iwaniec-Kowalski-Friedlander)

Let χ be a non-principal Dirichlet character mod p (a prime). Let M and N be non-negative integers with N \geq 1 and let r \geq 2, then

$$|S_{\chi}(M,N)| \leq 30 \cdot N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Theorem (ET)

Let p be a prime. Let χ be a non-principal Dirichlet character mod p. Let M and N be non-negative integers with $N \ge 1$ and let r be a positive integer. Then for $p \ge 10^7$, we have

$$|S_{\chi}(M,N)| \leq 2.74 N^{1-\frac{1}{r}} p^{\frac{r+1}{4r^2}} (\log p)^{\frac{1}{r}}.$$

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $> 10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $> 10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

・ロト ・ 同ト ・ ヨト ・ ヨト

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $> 10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $> 10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime p > 3 there is a primitive root g and an integer $x \in [1, p 1]$ with $\log_g x = x$, that is, $g^x \equiv x \pmod{p}$.
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

ヘロト ヘワト ヘビト ヘビト

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $> 10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $> 10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Some Applications of the Explicit Estimates

- Booker (2006) computed the class number of a 32-digit discriminant using an explicit estimate of a character sum.
- McGown proved (2012) that there is no norm-Euclidean cubic field with discriminant $> 10^{140}$. Recently (2017) improved to no Norm-Euclidean fields with discriminant $> 10^{100}$
- Levin, Pomerance and Soundararajan proved a conjecture of Brizolis that for every prime *p* > 3 there is a primitive root *g* and an integer *x* ∈ [1, *p* − 1] with log_{*g*} *x* = *x*, that is, *g^x* ≡ *x* (mod *p*).
- Explicit bound on the least prime primitive root done by Cohen, Oliveira e Silva and Trudgian (2016).

Key Inequality to prove Burgess Inequality

Theorem (Burgess, Booker, ET)

Let h and w be positive integers. Let χ be a primitive Dirichlet character mod p, then

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} < (2w-1)!!p \, h^w + (2w-1)\sqrt{p} \, h^{2w}.$$

Sketch of a Proof

۲

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \mod p} \chi(q(x)),$$

where

$$q(x) = \frac{(x+l_1)(x+l_2)\dots(x+l_w)}{(x+l_{w+1})(x+l_{w+2})\dots(x+l_{2w})}$$

• If q(x) is not a k-th power (where k is the order of χ), then

$$\left|\sum_{x \mod p} \chi(q(x))\right| \leq (r-1)\sqrt{p},$$

where r is the number of distinct roots of q(x)

Sketch of a Proof

٩

$$\sum_{m=1}^{p} \left| \sum_{l=0}^{h-1} \chi(m+l) \right|^{2w} = \sum_{l_1, l_2, \dots, l_{2w}} \sum_{x \mod p} \chi(q(x)),$$

where

$$q(x) = \frac{(x+l_1)(x+l_2)\dots(x+l_w)}{(x+l_{w+1})(x+l_{w+2})\dots(x+l_{2w})}$$

• If q(x) is not a k-th power (where k is the order of χ), then

$$\sum_{x \bmod p} \chi(q(x)) \leq (r-1)\sqrt{p},$$

where *r* is the number of distinct roots of q(x).

Applications

Theorem (ET 2015)

Let p > 3 be a prime and k be a positive integer that divides p - 1. Let g(p, k) be the least k-th power non-residue mod p. Then

$$g(p,k) \leq \begin{cases} 1.1p^{1/4}\log p & \text{if } p \equiv 3 \mod 4 \text{ and } k = 2, \\ 0.9p^{1/4}\log p & \text{otherwise.} \end{cases}$$

Theorem (ET 2012)

If χ is any non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H], then

$$H \le \begin{cases} 3.64p^{1/4} \log p, & \text{for all odd } p, \\ 1.55p^{1/4} \log p, & \text{for } p \ge 2.5 \cdot 10^9. \end{cases}$$

イロト 不得 とくほ とくほ とうほ

Applications

Theorem (ET 2015)

Let p > 3 be a prime and k be a positive integer that divides p - 1. Let g(p, k) be the least k-th power non-residue mod p. Then

$$g(p,k) \leq \begin{cases} 1.1p^{1/4}\log p & \text{if } p \equiv 3 \mod 4 \text{ and } k = 2, \\ 0.9p^{1/4}\log p & \text{otherwise.} \end{cases}$$

Theorem (ET 2012)

If χ is any non-principal Dirichlet character to the prime modulus p which is constant on (N, N + H], then

$$H \le \begin{cases} 3.64p^{1/4} \log p, & \text{for all odd } p, \\ 1.55p^{1/4} \log p, & \text{for } p \ge 2.5 \cdot 10^9. \end{cases}$$

ヘロン 人間 とくほ とくほ とう

3

Thank you!

Enrique Treviño The least quadratic non-residue and related problems