March 16, 2012

- 1. Find the Taylor polynomials of degree 4 approximating the following functions for x near 0.
 - (a) $\sqrt{1+x}$,
 - (b) $\arctan x$,
 - (c) $\frac{1}{\sqrt{1+x}}$.
- 2. Find the Taylor polynomial of degree 4 approximating the following functions for x near 1.
 - (a) $\sqrt{1-x}$,
 - (b) $\sqrt{1+x}$,
 - (c) $\ln(x^2)$.
- 3. The function f(x) is approximated near x = 0 by the third degree polynomial

$$P_3(x) = 2 - x - \frac{x^2}{3} + 2x^3.$$

Give the values of f(0), f'(0), f''(0) and f'''(0).

4. Show how you can use the Taylor approximation $\sin(x) \approx x - \frac{x^3}{3!}$, for x near 0, to explain why

$$\lim_{x \to 0} \frac{\sin x}{x} = 1.$$

- 5. Find the first four terms of the Taylor series for the following functions about x = a.
 - (a) $\sin x$, for $a = \frac{\pi}{4}$.
 - (b) $\frac{1}{x}$ for a = 2.

6. Find an expression for the general term of the series:

(a)
$$\frac{1}{1-x} = 1 + x + x^2 + x^3 + x^4 + \dots$$

(b) $\ln(1+x) = x - \frac{x^2}{2} + \frac{x^3}{3} - \frac{x^4}{4} + \dots$
(c) $e^{x^2} = 1 + x^2 + \frac{x^4}{2!} + \frac{x^6}{3!} + \frac{x^8}{4!} + \dots$

7. Calculate the following sums b recognizing the Taylor series evaluaion:

(a)
$$1 - \frac{1}{3!} + \frac{1}{5!} - \frac{1}{7!} + \dots$$

(b) $1 - \frac{100}{2!} + \frac{10000}{4!} - \frac{1000000}{6!} + \dots$
(c) $1 - 0.1 + (0.1)^2 - (0.1)^3 + \dots$

8. Find the radius of convergence of the Taylor series for $\sqrt{1+x}$ around x = 0.