March 30, 2012

- 1. Find the first 4 nonzero terms of the Taylor series about 0 for the following functions.
 - (a) $\sqrt{1+3x}$,
 - (b) $\cos(\theta^2)$,
 - (c) $t\sin(t^2) t^3$.
- 2. Expand $\frac{1}{x+2}$ in terms of $\frac{x}{2}$.
- 3. For values of x near 0, order the following three functions from smallest to largest:
 - (a) $1 + \sin x$, (b) e^x , (c) $\frac{1}{\sqrt{1-2x}}$.
- 4. Use Taylor series to explain the patterns in the digits in the following expansions:

(a)
$$\frac{1}{0.98} = 1.02040816...,$$

(b) $\left(\frac{1}{0.99}\right)^2 = 1.020304050607...$

5. Approximate the following numbers using the third degree Taylor polynomial about 0 and then find an estimate on how big the error can be:

- 6. Let $f(x) = x^5 + x^4 + x^3 + x^2 + x + 1$. Let $P_n(x)$ be the *n*-th degree Taylor polynomial of f(x) about 0. Given x between -1 and 1, find how big n must be to guarantee that the error $|f(x) P_n(x)|$ is smaller than:
 - (a) 1.5
 - (b) 0.5.
 - (c) 0.1.
- 7. True/False:
 - (a) If f(x) and g(x) have the same Taylor polynomial of degree 2 near x = 0, then f(x) = g(x).
 - (b) The Taylor series for $x^3 \cos x$ about x = 0 has only odd powers.
 - (c) The Taylor series for f(x) converges everywhere f is defined.
 - (d) A Taylor polynoial for f near x = a touches the graph of f only at x = a.
 - (e) If $f^{(n)}(0) \ge n!$ for all n, then the Taylor series for f near x = 0 diverges at x = 0.