5.3.8 $A+B$ will not necessarily be orthogonal, because the columns may not be unit vectors. For example, if $A=B=I_{n}$, then $A+B=2 I_{n}$, which is not orthogonal.
5.3.28 Write $L(\vec{x})=A \vec{x}$; by Definition 5.3.1, A is an orthogonal $n \times n$ matrix, so that $A^{T} A=I_{n}$, by Theorem 5.3.7. Now $L(\vec{v}) \cdot L(\vec{w})=(A \vec{v}) \cdot(A \vec{w})=(A \vec{v})^{T} A \vec{w}=\vec{v}^{T} A^{T} A \vec{w}=\vec{v}^{T} I_{n} \vec{w}=\vec{v}^{T} \vec{w}=\vec{v} \cdot \vec{w}$, as claimed. Note that we have used Theorems 5.3.6 and 5.3.9a.
5.3.29 We will use the fact that L preserves length (by Definition 5.3.1) and the dot product (by Exercise 28):
$\angle(L(\vec{v}), L(\vec{w}))=\arccos \frac{L(\vec{v}) \cdot L(\vec{w})}{\|L(\vec{v})\| L(\vec{w}) \|}=\arccos \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\|\|\vec{w}\|}=\angle(\vec{v}, \vec{w})$.
5.3.30 If $L(\vec{x})=\overrightarrow{0}$, then $\|L(\vec{x})\|=\|\vec{x}\|=0$, so that $\vec{x}=\overrightarrow{0}$. Therefore, $\operatorname{ker}(L)=\{\overrightarrow{0}\}$.

By Theorem 3.3.7, $\operatorname{dim}(\operatorname{im}(L))=m-\operatorname{dim}(\operatorname{ker}(L))=m$.
Since \mathbb{R}^{n} has an m-dimensional subspace (namely, im (L)), the inequality $m \leq n$ holds.
The transformation L preserves right angles (the proof of Theorem 5.3.2 applies), so that the columns of A are orthonormal (since they are $L\left(\vec{e}_{1}\right), \ldots, L\left(\vec{e}_{m}\right)$).
Therefore, we have $A^{T} A=I_{m}$ (the proof of Theorem 5.3.7 applies).
Since the vectors $\vec{v}_{1}, \ldots, \vec{v}_{m}$ form an orthonormal basis of $\operatorname{im}(A)$, the matrix $A A^{T}$ represents the orthogonal projection onto $\operatorname{im}(A)$, by Theorem 5.3.10.
A simple example of such a transformation is $L(\vec{x})=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right] \vec{x}$, that is, $L\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}x_{1} \\ x_{2} \\ 0\end{array}\right]$.
5.3.31 Yes! If A is orthogonal, then so is A^{T}, by Exercise 11. Since the columns of A^{T} are orthogonal, so are the rows of A.
5.3.32 a No! As a counterexample, consider $A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1 \\ 0 & 0\end{array}\right]$ (see Exercise 30).
b Yes! More generally, if A and B are $n \times n$ matrices such that $B A=I_{n}$, then $A B=I_{n}$, by Theorem 2.4.8c.
5.3.40 An orthonormal basis of W is $\vec{u}_{1}=\left[\begin{array}{l}0.5 \\ 0.5 \\ 0.5 \\ 0.5\end{array}\right], \vec{u}_{2}=\left[\begin{array}{r}-0.1 \\ 0.7 \\ -0.7 \\ 0.1\end{array}\right]$ (see Exercise 5.2.9).

By Theorem 5.3.10, the matrix of the projection onto W is $Q Q^{T}$, where $Q=\left[\begin{array}{ll}\vec{u}_{1} & \vec{u}_{2}\end{array}\right]$.
$Q Q^{T}=\frac{1}{100}\left[\begin{array}{rrrr}26 & 18 & 32 & 24 \\ 18 & 74 & -24 & 32 \\ 32 & -24 & 74 & 18 \\ 24 & 32 & 18 & 26\end{array}\right]$
5.3.56 Yes and yes (see Exercise 57).
5.3.57 Yes, L is linear, since $L(A+B)=(A+B)^{T}=A^{T}+B^{T}=L(A)+L(B)$ and $L(k A)=(k A)^{T}=k A^{T}=k L(A)$.

Yes, L is an isomorphism; the inverse is the transformation $R(A)=A^{T}$ from $\mathbb{R}^{n \times m}$ to $\mathbb{R}^{m \times n}$.
5.4.20 Using Theorem 5.4.6, we find $\vec{x}^{*}=\left[\begin{array}{l}2 \\ 2\end{array}\right]$ and $\vec{b}-A \vec{x}^{*}=\left[\begin{array}{r}-1 \\ 1 \\ 1\end{array}\right]$.

Note that $\vec{b}-A \vec{x}^{*}$ is perpendicular to the two columns of A.
5.4.21 Using Theorem 5.4.6, we find $\vec{x}^{*}=\left[\begin{array}{r}-1 \\ 2\end{array}\right]$ and $\vec{b}-A \vec{x}^{*}=\left[\begin{array}{r}-12 \\ 36 \\ -18\end{array}\right]$, so that $\left\|\vec{b}-A \vec{x}^{*}\right\|=42$.
5.4.22 Using Theorem 5.4.6, we find $\vec{x}^{*}=\left[\begin{array}{r}3 \\ -2\end{array}\right]$ and $\vec{b}-A \vec{x}^{*}=\overrightarrow{0}$. This system is in fact consistent and \vec{x}^{*} is the exact solution; the error $\left\|\vec{b}-A \vec{x}^{*}\right\|$ is 0 .
5.4.30 We attempt to solve the system

$$
\begin{aligned}
& c_{0}+0 c_{1}=0 \\
& c_{0}+0 c_{1}=1, \text { or } \\
& c_{0}+1 c_{1}=1
\end{aligned}\left[\begin{array}{ll}
1 & 0 \\
1 & 0 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
1
\end{array}\right] .
$$

This system cannot be solved exactly; the least-squares solution is $\left[\begin{array}{c}c_{0}^{*} \\ c_{1}^{*}\end{array}\right]=\left[\begin{array}{c}\frac{1}{2} \\ \frac{1}{2}\end{array}\right]$. The line that fits the data points best is $f^{*}(t)=\frac{1}{2}+\frac{1}{2} t$.

Figure 5.18: for Problem 5.4.30.
The line goes through the point $(1,1)$ and "splits the difference" between $(0,0)$ and $(0,1)$. See Figure 5.18.
5.4.31 We want $\left[\begin{array}{l}c_{0} \\ c_{1}\end{array}\right]$ such that

$$
\begin{aligned}
& 3=c_{0}+0 c_{1} \\
& 3=c_{0}+1 c_{1} \\
& 6=c_{0}+1 c_{1}
\end{aligned} \text { or } \quad\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{l}
3 \\
3 \\
6
\end{array}\right] .
$$

Since ker $\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right]=\{\overrightarrow{0}\},\left[\begin{array}{l}c_{0} \\ c_{1}\end{array}\right]^{*}=\left(\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 1\end{array}\right]\right)^{-1}\left[\begin{array}{lll}1 & 1 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}3 \\ 3 \\ 6\end{array}\right]$
$=\left[\begin{array}{ll}3 & 2 \\ 2 & 2\end{array}\right]^{-1}\left[\begin{array}{c}12 \\ 9\end{array}\right]=\left[\begin{array}{l}3 \\ \frac{3}{2}\end{array}\right]$ so $f^{*}(t)=3+\frac{3}{2} t$. (See Figure 5.19.)

Figure 5.19: for Problem 5.4.31.
5.4.32 We want $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]$ of $f(t)=c_{0}+c_{1} t+c_{2} t^{2}$ such that

$$
\begin{aligned}
27 & =c_{0}+0 c_{1}+0 c_{2} \\
0 & =c_{0}+1 c_{1}+1 c_{2} \text { or } \\
0 & =c_{0}+2 c_{1}+4 c_{2} \\
0 & =c_{0}+3 c_{1}+9 c_{2}
\end{aligned} \quad\left[\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9
\end{array}\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]=\left[\begin{array}{c}
27 \\
0 \\
0 \\
0
\end{array}\right]
$$

If we call the coefficient matrix A, we notice that $\operatorname{ker}(A)=\{\overrightarrow{0}\}$ so

$$
\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]^{*}=\left(A^{T} A\right)^{-1} A^{T}\left[\begin{array}{c}
27 \\
0 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{r}
25.65 \\
-28.35 \\
6.75
\end{array}\right] \text { so } f^{*}(t)=25.65-28.35 t+6.75 t^{2}
$$

5.4.33 We want $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]$ such that
$0=c_{0}+\sin (0) c_{1}+\cos (0) c_{2}$
$1=c_{0}+\sin (1) c_{1}+\cos (1) c_{2}$
$2=c_{0}+\sin (2) c_{1}+\cos (2) c_{2}$
$3=c_{0}+\sin (3) c_{1}+\cos (3) c_{2}$ or $\quad\left[\begin{array}{ccc}1 & 0 & 1 \\ 1 & \sin (1) & \cos (1) \\ 1 & \sin (2) & \cos (2) \\ 1 & \sin (3) & \cos (3)\end{array}\right]\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]=\left[\begin{array}{l}0 \\ 1 \\ 2 \\ 3\end{array}\right]$.

Since the coefficient matrix has kernel $\{\overrightarrow{0}\}$, we compute $\left[\begin{array}{l}c_{1} \\ c_{2} \\ c_{3}\end{array}\right]^{*}$ using Theorem 5.4.6, obtaining

$$
\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2}
\end{array}\right]^{*} \approx\left[\begin{array}{c}
1.5 \\
0.1 \\
-1.41
\end{array}\right] \text { so } f^{*}(t) \approx 1.5+0.1 \sin t-1.41 \cos t
$$

5.4.34 We want $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right]$ such that

$$
\left[\right]\left[\begin{array}{l}
c_{0} \\
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right]=\left[\begin{array}{l}
0 \\
0.5 \\
1 \\
1.5 \\
2 \\
2.5 \\
3
\end{array}\right]
$$

Since the columns of the coefficient matrix are linearly independent, its kernel is $\{\overrightarrow{0}\}$. We can use Theorem 5.4.6 to compute $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ c_{4}\end{array}\right] \approx\left[\begin{array}{c}1.5 \\ 0.109 \\ -1.537 \\ 0.303 \\ 0.043\end{array}\right]$ so $f^{*}(t) \approx 1.5+0.109 \sin (t)-1.537 \cos (t)+0.303 \sin (2 t)+0.043 \cos (2 t)$.
5.4.35 a The $i j$ th entry of $A_{n}^{T} A_{n}$ is the dot product of the i th row of A_{n}^{T} and the j th column of A_{n}, i.e.

$$
A_{n}^{T} A_{n}=\left[\begin{array}{lll}
n & \sum_{i=1}^{n} \sin a_{i} & \sum_{i=1}^{n} \cos a_{i} \\
\sum_{i=1}^{n} \sin a_{i} & \sum_{i=1}^{n} \sin ^{2} a_{i} & \sum_{i=1}^{n} \sin a_{i} \cos a_{i} \\
\sum_{i=1}^{n} \cos a_{i} & \sum_{i=1}^{n} \sin a_{i} \cos a_{i} & \sum_{i=1}^{n} \cos ^{2} a_{i}
\end{array}\right] \text { and } A_{n}^{T} \vec{b}=\left[\begin{array}{l}
\sum_{i=1}^{n} g\left(a_{i}\right) \\
\sum_{i=1}^{n} g\left(a_{i}\right) \sin a_{i} \\
\sum_{i=1}^{n} g\left(a_{i}\right) \cos a_{i}
\end{array}\right] .
$$

$\mathrm{b} \lim _{n \rightarrow \infty} \frac{2 \pi}{n} A_{n}^{T} A_{n}=\left[\begin{array}{lll}2 \pi & \int_{0}^{2 \pi} \sin t d t & \int_{0}^{2 \pi} \cos t d t \\ \int_{0}^{2 \pi} \sin t d t & \int_{0}^{2 \pi} \sin ^{2} t d t & \int_{0}^{2 \pi} \sin t \cos t d t \\ \int_{0}^{2 \pi} \cos t d t & \int_{0}^{2 \pi} \sin t \cos t d t & \int_{0}^{2 \pi} \cos ^{2} t d t\end{array}\right]=\left[\begin{array}{ccc}2 \pi & 0 & 0 \\ 0 & \pi & 0 \\ 0 & 0 & \pi\end{array}\right]$
and $\lim _{n \rightarrow \infty} \frac{2 \pi}{n} A_{n}^{T} \vec{b}=\left[\begin{array}{l}\int_{0}^{2 \pi} g(t) d t \\ \int_{0}^{2 \pi} g(t) \sin t d t \\ \int_{0}^{2 \pi} g(t) \cos t d t\end{array}\right]$
$\left(\right.$ Here $\frac{2 \pi}{n}=\Delta t$ so $\lim _{n \rightarrow \infty} \frac{2 \pi}{n} \sum_{i=1}^{n} \cos \left(t_{i}\right)=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} \cos \left(t_{i}\right) \Delta t=\int_{0}^{2 \pi} \cos t d t$ for instance. All other limits are obtained similarly.)
$\mathrm{c}\left[\begin{array}{c}c \\ p \\ q\end{array}\right]=\lim _{n \rightarrow \infty}\left[\begin{array}{c}c_{n} \\ p_{n} \\ q_{n}\end{array}\right]=\left[\begin{array}{ccc}2 \pi & 0 & 0 \\ 0 & \pi & 0 \\ 0 & 0 & \pi\end{array}\right]^{-1}\left[\begin{array}{l}\int_{0}^{2 \pi} g(t) d t \\ \int_{0}^{2 \pi} g(t) \sin t d t \\ \int_{0}^{2 \pi} g(t) \cos t d t\end{array}\right]=\left[\begin{array}{l}\frac{1}{2 \pi} \int_{0}^{2 \pi} g(t) d t \\ \frac{1}{\pi} \int_{0}^{2 \pi} g(t) \sin t d t \\ \frac{1}{\pi} \int_{0}^{2 \pi} g(t) \cos t d t\end{array}\right]$ and $f(t)=c+p \sin t+q \cos t$, where c, p, q are given above.
5.4.36 We want $\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$ such that

$$
\begin{aligned}
a+b \sin \left(\frac{2 \pi}{366} 32\right)+c \cos \left(\frac{2 \pi}{366} 32\right) & =10 \\
a+b \sin \left(\frac{2 \pi}{366} 77\right)+c \cos \left(\frac{2 \pi}{366} 77\right) & =12 \\
a+b \sin \left(\frac{2 \pi}{366} 121\right)+c \cos \left(\frac{2 \pi}{366} 121\right) & =14
\end{aligned}
$$

$$
\begin{gathered}
a+b \sin \left(\frac{2 \pi}{366} 152\right)+c \cos \left(\frac{2 \pi}{366} 152\right)=15 \\
\text { Using } A=\left[\begin{array}{ccc}
1 & \sin \left(\frac{2 \pi}{366} 32\right) & \cos \left(\frac{2 \pi}{366} 32\right) \\
1 & \sin \left(\frac{2 \pi}{366} 77\right) & \cos \left(\frac{2 \pi}{366} 77\right) \\
1 & \sin \left(\frac{2 \pi}{366} 121\right) & \cos \left(\frac{2 \pi}{366} 121\right) \\
1 & \sin \left(\frac{2 \pi}{366} 152\right) & \cos \left(\frac{2 \pi}{366} 152\right)
\end{array}\right] \text { and } \vec{b}=\left[\begin{array}{l}
10 \\
12 \\
14 \\
15
\end{array}\right], \text { we compute }\left[\begin{array}{l}
a \\
b \\
c
\end{array}\right]^{*} \\
=\left(A^{T} A\right)^{-1} A^{T} \vec{b} \approx\left[\begin{array}{r}
12.26 \\
0.431 \\
-2.899
\end{array}\right] \text { and } f^{*}(t) \approx 12.26+0.431 \sin \left(\frac{2 \pi}{366} t\right)-2.899 \cos \left(\frac{2 \pi}{366} t\right) .
\end{gathered}
$$

5.4.37 a We want c_{0}, c_{1} such that

$$
\left.\begin{array}{l}
\begin{array}{l}
c_{0}+c_{1}(35)=\log 35 \\
c_{0}+c_{1}(46) \\
c_{0}+c_{1}(59) \\
c_{0}+c_{1}(69)=\log 46 \\
\log 133
\end{array} \text { or }
\end{array} \begin{array}{cc}
1 & 35 \\
1 & 46 \\
1 & 59 \\
1 & 69
\end{array}\right]\left[\begin{array}{c}
c_{0} \\
c_{1}
\end{array}\right]=\left[\begin{array}{c}
\log 35 \\
\log 46 \\
\log 77 \\
\log 133
\end{array}\right]
$$

$\mathrm{b} d \approx 10^{0.915} \cdot 10^{0.017 t} \approx 8.22 \cdot 10^{0.017 t}$
c If $t=88$ then $d \approx 258$. Since the Airbus has only 93 displays, new technologies must have rendered the old trends obsolete.
5.4.38 We want $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]$ such that
$110=c_{0}+2 c_{1}+c_{2}$
$180=c_{0}+12 c_{1}+0 c_{2}$
$120=c_{0}+5 c_{1}+c_{2}$
$160=c_{0}+11 c_{1}+c_{2}$
$160=c_{0}+6 c_{1}+0 c_{2}$$\quad$ or $\quad\left[\begin{array}{rrr}1 & 2 & 1 \\ 1 & 12 & 0 \\ 1 & 5 & 1 \\ 1 & 11 & 1 \\ 1 & 6 & 0\end{array}\right]\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]=\left[\begin{array}{l}110 \\ 180 \\ 120 \\ 160 \\ 160\end{array}\right]$.
The least-squares solution is $\left[\begin{array}{l}c_{0} \\ c_{1} \\ c_{2}\end{array}\right]^{*}=\left[\begin{array}{r}125 \\ 5 \\ -25\end{array}\right]$, so that $w^{*}=125+5 h-25 g$.
For a general population, we expect c_{0} and c_{1} to be positive, since c_{0} gives the weight of a 5^{\prime} male, and increased height should contribute positively to the weight. We expect c_{2} to be negative, since females tend to be lighter than males of equal height.
5.4.39 a We want $\left[\begin{array}{l}c_{0} \\ c_{1}\end{array}\right]$ such that
6.1.4 Fails to be invertible; since $\operatorname{det}\left[\begin{array}{ll}1 & 4 \\ 2 & 8\end{array}\right]=8-8=0$.
6.1.18 $\operatorname{det}\left[\begin{array}{ccc}0 & 1 & k \\ 3 & 2 k & 5 \\ 9 & 7 & 5\end{array}\right]=30+21 k-18 k^{2}=-3(k-2)(6 k+5)$. So k cannot be 2 or $-\frac{5}{6}$.
6.1.26 $\operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left[\begin{array}{cc}4-\lambda & 2 \\ 2 & 7-\lambda\end{array}\right]=(4-\lambda)(7-\lambda)-4=(\lambda-8)(\lambda-3)=0$ if λ is 3 or 8.
6.1.27 $A-\lambda I_{3}$ is a lower triangular matrix with the diagonal entries $(2-\lambda),(3-\lambda)$ and $(4-\lambda) . \operatorname{Now}, \operatorname{det}\left(A-\lambda I_{3}\right)=$ $(2-\lambda)(3-\lambda)(4-\lambda)=0$ if λ is 2,3 or 4 .
6.1.28 $A-\lambda I_{3}$ is an upper triangular matrix with the diagonal entries $(2-\lambda),(3-\lambda)$ and $(5-\lambda)$. Now, $\operatorname{det}\left(A-\lambda I_{3}\right)=$ $(2-\lambda)(3-\lambda)(5-\lambda)=0$ if λ is 2,3 or 5 .

Chapter 7

Section 7.1

7.1.1 If \vec{v} is an eigenvector of A, then $A \vec{v}=\lambda \vec{v}$.

Hence $A^{3} \vec{v}=A^{2}(A \vec{v})=A^{2}(\lambda \vec{v})=A(A \lambda \vec{v})=A(\lambda A \vec{v})=A\left(\lambda^{2} \vec{v}\right)=\lambda^{2} A \vec{v}=\lambda^{3} \vec{v}$, so \vec{v} is an eigenvector of A^{3} with eigenvalue λ^{3}.
7.1.2 We know $A \vec{v}=\lambda \vec{v}$ so $\vec{v}=A^{-1} A \vec{v}=A^{-1} \lambda \vec{v}=\lambda A^{-1} \vec{v}$, so $\vec{v}=\lambda A^{-1} \vec{v}$ or $A^{-1} \vec{v}=\frac{1}{\lambda} \vec{v}$.

Hence \vec{v} is an eigenvector of A^{-1} with eigenvalue $\frac{1}{\lambda}$.
7.1.3 We know $A \vec{v}=\lambda \vec{v}$, so $\left(A+2 I_{n}\right) \vec{v}=A \vec{v}+2 I_{n} \vec{v}=\lambda \vec{v}+2 \vec{v}=(\lambda+2) \vec{v}$, hence \vec{v} is an eigenvector of $\left(A+2 I_{n}\right)$ with eigenvalue $\lambda+2$.
7.1.4 We know $A \vec{v}=\lambda \vec{v}$, so $7 A \vec{v}=7 \lambda \vec{v}$, hence \vec{v} is an eigenvector of $7 A$ with eigenvalue 7λ.
7.1.5 Assume $A \vec{v}=\lambda \vec{v}$ and $B \vec{v}=\beta \vec{v}$ for some eigenvalues λ, β. Then $(A+B) \vec{v}=A \vec{v}+B \vec{v}=\lambda \vec{v}+\beta \vec{v}=(\lambda+\beta) \vec{v}$ so \vec{v} is an eigenvector of $A+B$ with eigenvalue $\lambda+\beta$.
7.1.6 Yes. If $A \vec{v}=\lambda \vec{v}$ and $B \vec{v}=\mu \vec{v}$, then $A B \vec{v}=A(\mu \vec{v})=\mu(A \vec{v})=\mu \lambda \vec{v}$
7.1.7 We know $A \vec{v}=\lambda \vec{v}$ so $\left(A-\lambda I_{n}\right) \vec{v}=A \vec{v}-\lambda I_{n} \vec{v}=\lambda \vec{v}-\lambda \vec{v}=\overrightarrow{0}$ so a nonzero vector \vec{v} is in the kernel of $\left(A-\lambda I_{n}\right)$ so $\operatorname{ker}\left(A-\lambda I_{n}\right) \neq\{\overrightarrow{0}\}$ and $A-\lambda I_{n}$ is not invertible.
7.1.8 We want all $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ such that $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=5\left[\begin{array}{l}1 \\ 0\end{array}\right]$ hence $\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{l}5 \\ 0\end{array}\right]$, i.e. the desired matrices must have the form $\left[\begin{array}{ll}5 & b \\ 0 & d\end{array}\right]$.
7.1.9 We want $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 0\end{array}\right]=\lambda\left[\begin{array}{l}1 \\ 0\end{array}\right]$ for any λ. Hence $\left[\begin{array}{l}a \\ c\end{array}\right]=\left[\begin{array}{l}\lambda \\ 0\end{array}\right]$, i.e., the desired matrices must have the form $\left[\begin{array}{ll}\lambda & b \\ 0 & d\end{array}\right]$, they must be upper triangular.
7.1.10 We want $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}1 \\ 2\end{array}\right]=5\left[\begin{array}{l}1 \\ 2\end{array}\right]$, i.e. the desired matrices must have the form $\left[\begin{array}{cc}5-2 b & b \\ 10-2 d & d\end{array}\right]$.
7.1.11 We want $\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]\left[\begin{array}{l}2 \\ 3\end{array}\right]=\left[\begin{array}{l}-2 \\ -3\end{array}\right]$. So, $2 a+3 b=-2$ and $2 c+3 d=-3$. Thus, $b=\frac{-2-2 a}{3}$, and $d=\frac{-3-2 c}{3}$. So all matrices of the form $\left[\begin{array}{ll}a & \frac{-2-2 a}{3} \\ c & \frac{-3-2 c}{3}\end{array}\right]$ will fit.
7.1.12 Solving $\left[\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=2\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ we get $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{c}t \\ -\frac{3}{2} t\end{array}\right]($ with $t \neq 0)$ and solving $\left[\begin{array}{ll}2 & 0 \\ 3 & 4\end{array}\right]\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=4\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]$ we get $\left[\begin{array}{l}v_{1} \\ v_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ t\end{array}\right]$ (with $t \neq 0$).

Section 7.2

7.2.1 $\lambda_{1}=1, \lambda_{2}=3$ by Theorem 7.2.2.
7.2.2 $\quad \lambda_{1}=2$ (Algebraic multiplicity 2)
$\lambda_{2}=1$ (Algebraic multiplicity 2), by Theorem 7.2.2.
7.2.3 $\operatorname{det}\left(A-\lambda I_{2}\right)=\operatorname{det}\left[\begin{array}{cc}5-\lambda & -4 \\ 2 & -1-\lambda\end{array}\right]=\lambda^{2}-4 \lambda+3=(\lambda-1)(\lambda-3)=0$ so $\lambda_{1}=1, \lambda_{2}=3$.

