The solutions are of the form
$$\begin{bmatrix} x_1 \\ x_2 \\ x_2 \end{bmatrix} = \begin{bmatrix} -2t - 3r \\ t \\ r \end{bmatrix} = t \begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix} + r \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}$$
, so that $\ker(A) = \operatorname{span}\left(\begin{bmatrix} -2 \\ 1 \\ 0 \end{bmatrix}, \begin{bmatrix} -3 \\ 0 \\ 1 \end{bmatrix}\right)$.

3.1.4 Find all \vec{x} such that $A\vec{x} = \vec{0}$, or $x_1 + 2x_2 + 3x_2 = 0$.

3.1.10 Solving the system
$$A\vec{x} = \vec{0}$$
 we find that $\ker(A) = \operatorname{span} \begin{bmatrix} -2\\1\\0 \end{bmatrix}$.

3.1.11 Solving the system $A\vec{x} = \vec{0}$ we find that $\ker(A) = \operatorname{span} \begin{bmatrix} -2\\3\\1\\0 \end{bmatrix}$.

3.1.13 Solving the system $A\vec{x} = \vec{0}$ we find that $\ker(A) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ -2 \\ -1 \\ 1 \end{bmatrix}, \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right)$.

3.1.14 By Theorem 3.1.3, the image of A is the span of the column vectors of A:

 $\operatorname{im}(A) = \operatorname{span}\left(\begin{bmatrix} 1\\1\\1\end{bmatrix}, \begin{bmatrix} 2\\3\\3\end{bmatrix}\right).$

3.1.12 Solving the system $A\vec{x} = \vec{0}$ we find that $\ker(A) = \operatorname{span} \left(\begin{bmatrix} 1 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -2 \\ 0 \\ -1 \\ 1 \end{bmatrix} \right)$.

3.1.22 Compare with the solution to Exercise 21.

$$\begin{bmatrix} 2 & 1 & 3 \\ 3 & 4 & 2 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & -1 \end{bmatrix}$$

122

3.1.30 By Theorem 3.1.3, $A = \begin{bmatrix} 1 \\ 5 \end{bmatrix}$ does the job. There are many other possible answers: any nonzero $2 \times n$ matrix A whose column vectors are scalar multiples of vector $\begin{bmatrix} 1 \\ 5 \end{bmatrix}$.

- 3.1.38 a If a vector \vec{x} is in $\ker(A^k)$, that is, $A^k\vec{x} = \vec{0}$, then \vec{x} is also in $\ker(A^{k+1})$, since $A^{k+1}\vec{x} = AA^k\vec{x} = A\vec{0} = \vec{0}$. Therefore, $\ker(A) \subseteq \ker(A^2) \subseteq \ker(A^3) \subseteq \dots$
 - Exercise 37 shows that these kernels need not be equal.
 - b If a vector \vec{y} is in $\operatorname{im}(A^{k+1})$, that is, $\vec{y} = A^{k+1}\vec{x}$ for some \vec{x} , then \vec{y} is also in $\operatorname{im}(A^k)$, since we can write $\vec{y} = A^k(A\vec{x})$. Therefore, $\operatorname{im}(A) \supseteq \operatorname{im}(A^2) \supseteq \operatorname{im}(A^3) \supseteq \ldots$
 - Exercise 37 shows that these images need not be equal.
 - 3.1.39 a If a vector \vec{x} is in $\ker(B)$, that is, $B\vec{x} = \vec{0}$, then \vec{x} is also in $\ker(AB)$, since $AB(\vec{x}) = A(B\vec{x}) = A\vec{0} = \vec{0}$:
 - $\ker(B)\subseteq\ker(AB).$
 - Exercise 37 (with A=B) illustrates that these kernels need not be equal.
 - $\vec{y} = A(B\vec{x})$: $\operatorname{im}(AB) \subseteq \operatorname{im}(A)$.
 - Exercise 37 (with A = B) illustrates that these images need not be equal.

 - 3.1.40 For any \vec{x} in \mathbb{R}^m , the vector $B\vec{x}$ is in im(B) = ker(A), so that $AB\vec{x} = \vec{0}$. If we apply this fact to $\vec{x} = \vec{e}_1, \ \vec{e}_2, \dots, \vec{e}_m$, we find that all the columns of the matrix AB are zero, so that AB = 0.

b If a vector \vec{y} is in im(AB), that is, $\vec{y} = AB\vec{x}$ for some \vec{x} , then \vec{y} is also in im(A), since we can write

whole point of Gaussian elimination not to change the solutions of a system). b No; as a counterexample, consider $A = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix}$, with $\operatorname{im}(A) = \operatorname{span}(\vec{e_2})$, but $B = \operatorname{rref}(A) = \begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}$, with

3.1.44 a Yes; by construction of the echelon form, the systems $A\vec{x} = \vec{0}$ and $B\vec{x} = \vec{0}$ have the same solutions (it is the

 $im(B) = span(\vec{e}_1).$

- 3.2.2 Not a subspace, since W contains the vector $\vec{v} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$ but not the vector $(-1)\vec{v} = \begin{bmatrix} -1 \\ -2 \\ -3 \end{bmatrix}$.
- 3.2.3 $W = \operatorname{im} \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$ is a subspace of \mathbb{R}^3 , by Theorem 3.2.2.

3.2.4 $\operatorname{span}(\vec{v}_1,\ldots,\vec{v}_m)=\operatorname{im}[\vec{v}_1\ \ldots\ \vec{v}_m]$ is a subspace of \mathbb{R}^n , by Theorem 3.2.2.

- 3.2.5 We have subspaces $\{\vec{0}\}$, \mathbb{R}^3 , and all lines and planes (through the origin). To prove this, mimic the reasoning in Example 2.
- 3.2.**6** a Yes!
 - The zero vector is in $V \cap W$, since $\vec{0}$ is in both V and W.
 - If \vec{x} and \vec{y} are in $V \cap W$, then both \vec{x} and \vec{y} are in V, so that $\vec{x} + \vec{y}$ is in V as well, since V is a subspace of \mathbb{R}^n . Likewise, $\vec{x} + \vec{y}$ is in W, so that $\vec{x} + \vec{y}$ is in $V \cap W$.
 - If \vec{x} is in $V \cap W$ and k is an arbitrary scalar, then $k\vec{x}$ is in both V and W, since they are subspaces of \mathbb{R}^n . Therefore, $k\vec{x}$ is in $V \cap W$.
- b No; as a counterexample consider $V = \operatorname{span}(\vec{e}_1)$ and $W = \operatorname{span}(\vec{e}_2)$ in \mathbb{R}^2 .

3.2.18 Linearly dependent, since $\operatorname{rref}\begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 4 \\ 1 & 3 & 7 \\ 1 & 4 & 10 \end{bmatrix} = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 1 & 3 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. So, we find that the vector $\begin{bmatrix} 1 \\ 4 \\ 7 \end{bmatrix}$ turns out to

be redundant.

3.2.34 The fact that $\begin{bmatrix} 2 \\ 3 \end{bmatrix}$ is in ker(A) means that

$$A\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} = [\vec{v}_1 \ \vec{v}_2 \ \vec{v}_3 \ \vec{v}_4]\begin{bmatrix} 1\\2\\3\\4 \end{bmatrix} = \vec{v}_1 + 2\vec{v}_2 + 3\vec{v}_3 + 4\vec{v}_4 = \vec{0}, \text{ so that } \vec{v}_4 = -\frac{1}{4}\vec{v}_1 - \frac{1}{2}\vec{v}_2 - \frac{3}{4}\vec{v}_3.$$

3.2.35 If $\vec{v_i}$ is a linear combination of the other vectors in the list, $\vec{v_i} = c_1 \vec{v_1} + \dots + c_{i-1} \vec{v_{i-1}} + c_{i+1} \vec{v_{i+1}} + \dots + c_n \vec{v_n}$, then we can subtract $\vec{v_i}$ from both sides to generate a nontrivial relation (the coefficient of $\vec{v_i}$ will be -1).

Conversely, if there is a nontrivial relation $c_1\vec{v}_1 + \cdots + c_i\vec{v}_i + \cdots + c_n\vec{v}_n = \vec{0}$, with $c_i \neq 0$, then we can solve for vector \vec{v}_i and thus express \vec{v}_i as a linear combination of the other vectors in the list.

3.2.36 Yes; we know that there is a nontrivial relation $c_1\vec{v}_1 + c_2\vec{v}_2 + \cdots + c_m\vec{v}_m = \vec{0}$.

Now apply the transformation T to the vectors on both sides, and use linearity:

$$T(c_1\vec{v}_1 + c_2\vec{v}_2 + \dots + c_m\vec{v}_m) = T(\vec{0})$$
, so that $c_1T(\vec{v}_1) + c_2T(\vec{v}_2) + \dots + c_mT(\vec{v}_m) = \vec{0}$.

- 3.2.40 Yes; by Theorem 3.2.8, $\ker(A) = \{\vec{0}\}$ and $\ker(B) = \{\vec{0}\}$. Then $\ker(AB) = \{\vec{0}\}$ by Exercise 3.1.51, so that the columns of AB are linearly independent, by Theorem 3.2.8.
- 3.2.41 To show that the columns of B are linearly independent, we show that $\ker(B) = \{\vec{0}\}$. Indeed, if $B\vec{x} = \vec{0}$, then $AB\vec{x} = A\vec{0} = \vec{0}$, so that $\vec{x} = \vec{0}$ (since $AB = I_m$). By Theorem 3.2.8, $\operatorname{rank}(B) = \# \operatorname{columns} = m$, so that $m \leq n$ and in fact m < n (we are told that $m \neq n$). This implies that the rank of the $m \times n$ matrix A is less than n, so that the columns of A are linearly dependent (by
 - Theorem 3.2.8).
 - 3.2.42 We can use the hint and form the dot product of $\vec{v_i}$ and both sides of the relation
 - $c_1 \vec{v}_1 + \dots + c_i \vec{v}_i + \dots + c_m \vec{v}_m = \vec{0}$:
 - $(c_1\vec{v}_1 + \cdots + c_i\vec{v}_i + \cdots + c_m\vec{v}_m) \cdot \vec{v}_i = \vec{0} \cdot \vec{v}_i$, so that $c_1(\vec{v}_1 \cdot \vec{v}_i) + \cdots + c_i(\vec{v}_i \cdot \vec{v}_i) + \cdots + c_m(\vec{v}_m \cdot \vec{v}_i) = 0$.

3.2.43 Consider a linear relation $c_1\vec{v}_1 + c_2(\vec{v}_1 + \vec{v}_2) + c_3(\vec{v}_1 + \vec{v}_2 + \vec{v}_3) = \vec{0}$, or, $(c_1 + c_2 + c_3)\vec{v}_1 + (c_2 + c_3)\vec{v}_2 + c_3\vec{v}_3 = \vec{0}$. Since there is only the trivial relation among the vectors $\vec{v}_1, \vec{v}_2, \vec{v}_3$, we must have $c_1 + c_2 + c_3 = c_2 + c_3 = c_3 = 0$,

Since $\vec{v_i}$ is perpendicular to all the other $\vec{v_i}$, we will have $\vec{v_i} \cdot \vec{v_i} = 0$ whenever $j \neq i$; since $\vec{v_i}$ is a unit vector, we will have $\vec{v}_i \cdot \vec{v}_i = 1$. Therefore, the equation above simplifies to $c_i = 0$. Since this reasoning applies to all $i=1,\ldots,m$, we have only the trivial relation among the vectors $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$ so that these vectors are linearly independent, as claimed.

so that $c_3 = 0$ and then $c_2 = 0$ and then $c_1 = 0$, as claimed. 3.2.44 Yes; this is a special case of Exercise 40 (recall that $ker(A) = \{\vec{0}\}\$, by Theorem 3.1.7b).

134

then $\vec{x} = (c_1 \vec{v}_1 + \dots + c_p \vec{v}_p) + (d_1 \vec{w}_1 + \dots + d_a \vec{w}_a)$, so that \vec{x} is in V + W.

 $\operatorname{span}(\vec{v}_1,\ldots,\vec{v}_p,\vec{w}_1,\ldots,\vec{w}_q)$ (compare with Exercise 4).

3.2.50 The verification of the three properties listed in Definition 3.2.1 is straightforward. Alternatively, we can choose a basis $\vec{v}_1, \ldots, \vec{v}_p$ of V and a basis $\vec{w}_1, \ldots, \vec{w}_q$ of W (see Exercise 38a) and show that V + W =

Indeed, if $\vec{v} + \vec{w}$ is in V + W, then \vec{v} is a linear combination of $\vec{v}_1, \ldots, \vec{v}_p$ and \vec{w} is a linear combination of $\vec{w}_1, \ldots, \vec{w}_q$, so that $\vec{v} + \vec{w}$ is a linear combination of $\vec{v}_1, \ldots, \vec{v}_p, \vec{w}_1, \ldots, \vec{w}_q$. Conversely, if \vec{x} is in span $(\vec{v}_1, \ldots, \vec{v}_p, \vec{w}_1, \ldots, \vec{v}_q)$,