3.1.4 Find all Z such that AZ = 0, or 1 + 2z + 3z = 0.

Ty —2t — 3r
The solutions are of the form |xzo | = t =1
Zo T



3.1.10 Solving the system AZ = 0 we find that ker(A4) = span

3.1.11 Solving the system A% = 0 we find that ker(A) = span

3.1.12 Solving the system AZ = § we find that ker(A) = span

3.1.13 Solving the system AZ = 0 we find that ker(A) = span

-2

0

-1

1

0
-3 0
0 0
-2 0
—11’1]0
1 0
0 1

3.1.14 By Theorem 3.1.3, the image of A is the span of the column vectors of A:

im(A) = span



3.1.22 Compare with the solution to Exercise 21.

2 1. 3 10 2
3 4 2|0 11 -1
6 5 T 00 0
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3.1.30 By Theorem 3.1.3, A = [é] does the job. There are many other possible answers: any nonzero 2 x n matrix

A whose column vectors are scalar multiples of vector {é] .



3.1.38 a If a vector Z is in ker(A¥), that is, A*Z = 0, then Z is also in ker(A*+1), since A¥*1% = AA*Z = AG=0.
Therefore, ker(A) C ker(A?) C ker(A3) C ...

Exercise 37 shows that these kernels need not be equal.

b If a vector ¢ is in im(A*+1), that is, ¥ = AF+'% for some &, then 7 is also in im(AF), since we can write
§ = A*(AZ). Therefore, im(A) D im(A2) Dim(43) D ....

Exercise 37 shows that these images need not be equal.
3.1.39 a If a vector Z is in ker(B), that is, BZ = 0, then Z is also in ker(AB), since AB(%) = A(Bx) = A0 = 0:
ker(B) C ker(AB).

Exercise 37 (with A = B) illustrates that these kernels need not be equal.

b If a vector § is in im(AB), that is, ¥ = ABZ for some Z, then 7 is also in im(A4), since we can write
g = A(BZ):
im(AB) C im(A4).

Exercise 37 (with A = B) illustrates that these images need not be equal.

3.1.40 For any & in R™, the vector BZ is in im(B) = ker(A), so that ABZ = 0. If we apply this fact to & =
€1, €2,...,Em, we find that all the columns of the matrix AB are zero, so that AB = 0.



3.1.44 a Yes; by construction of the echelon form, the systems AZ = 0 and B# = 0 have the same solutions (it is the
whole point of Gaussian elimination not to change the solutions of a system).

10
00

0 o

1 O]’ with im(A4) = span(éy), but B = rref(4) = [

] , with

b No; as a counterexample, consider A = [

im(B) = span(é).



Section 3.2

1 -1
3.2.2 Not a subspace, since W contains the vector ¥ = | 2 | but not the vector (—1)o = | —2
3 -3
12 3
323 W=im |4 5 6| isasubspace of R®, by Theorem 3.2.2.
7 8 9
3.2.4 span(?y,...,¥y) =Iim[¥1 ... Un] is a subspace of R, by Theorem 3.2.2.

3.2.5 We have subspaces {0}, R3, and all lines and planes (through the origin). To prove this, mimic the reasoning
in Example 2.

3.2.6 a Yes!
e The zero vector is in V N W, since 0 is in both V and W.

e If ¥ and 7 are in VN W, then both Z and § are in V, so that -+ ¢ is in V as well, since V is a subspace of R".
Likewise, & + ¢ is in W, so that Z+ 7 is in VN W.

o If ¥isin VNW and k is an arbitrary scalar, then k& is in both V and W, since they are subspaces of R™,
Therefore, kZ is in VN W.

b Noj as a counterexample consider V' = span(é;) and W = span(&) in R2.



turns out to

~ A

3.2.18 Linearly dependent, since rref . So, we find that the vector

—_ ==
O N =
O~ =
OO O
oo = O
OO W N
—

o

be redundant.



3.2.34 The fact that is in ker(A) means that

W N =

- [171 Ty U3 174] = U] + 20U + 303 + 49, = 0, so that ¥4 = _211171 . %_’2 - %_’3‘

=~ wWw N~
=N

3.2.35 If 4; is a linear combination of the other vectors in the list, ¥; = ¢191 +- - - + ¢i—1Ui—1 + Cix1Tip1 + - - +Cnn,
then we can subtract #; from both sides to generate a nontrivial relation (the coefficient of #; will be -1).

Conversely, if there is a nontrivial relation ¢19) + -+ + ¢t + - -+ + cp¥Up = 0, with ¢; # 0, then we can solve for
vector ¥; and thus express ¥; as a linear combination of the other vectors in the list.

3.2.36 Yes; we know that there is a nontrivial relation ¢1%1 + ca¥2 + - -+ + CnUm = 0.
Now apply the transformation T to the vectors on both sides, and use linearity:

T(c1Ty + caliz + -+ + Cmm) = T(0), s0 that e T(#h) + c2aT'(W2) + -+ - + T (Tm) = 0.
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3.2.40 Yes; by Theorem 3.2.8, ker(A) = {0} and ker(B) = {0}. Then ker(AB) = {0} by Exercise 3.1.51, so that the
columns of AB are linearly independent, by Theorem 3.2.8.

3.2.41 To show that the columns of B are linearly independent, we show that ker(B) = {0}. Indeed, if BZ = 0,
then AB¥ = A0 =0, so that Z = 0 (since AB = I,,).

By Theorem 3.2.8, rank(B) = # columns = m, so that m < n and in fact m < n (we are told that m # n). This
implies that the rank of the m x n matrix A is less than n, so that the columns of A are linearly dependent (by
Theorem 3.2.8).

3.2.42 We can use the hint and form the dot product of @; and both sides of the relation
et + -+ ¢l + -+ ey, = O:
(1t + -+ iy 4 -+ CmTm) - 0:=0 - ¥, so that (P - U) + -+ (T T) + o+ e (U - T3) =0,

Since ¥; is perpendicular to all the other ¥;, we will have ¥; - ¥; = 0 whenever j # 4; since ¥; is a unit vector, we
will have #; - 0; = 1. Therefore, the equation above simplifies to ¢; = 0.

Since this reasoning applies to all i = 1,...,m, we have only the trivial relation among the vectors o', s, . .., U,
so that these vectors are linearly independent, as claimed.

3.2.43 Consider a linear relation ¢191 + 2 (% + T2) + c3 () + U +73) = 0, or, (€1 +ca+c3)th 4 (c2+ c3) Vs + cats = 0.
Since there is only the trivial relation among the vectors ¥y, ¥, ¥s, we must have ¢ 4 cz+c3=co+c3 =c3=0,
so that c3 = 0 and then ¢z = 0 and then ¢; = 0, as claimed.

3.2.44 Yes; this is a special case of Exercise 40 (recall that ker(A) = {0}, by Theorem 3.1.7b).



3.2.50 The verification of the three properties listed in Definition 3.2.1 is straightforward. Alternatively, we

can choose a basis #y,...,9, of V and a basis wh,...,Wq of W (see Exercise 38a) and show that V + W =
span(f, ..., Up, Wi, ..., W) (compare with Exercise 4).

Indeed, if T+ is in V +W, then 7 is a linear combination of 1, . . ., ¥, and 4 is a linear combination of w1, . . . , @y,
so that ¥ + 17 is a linear combination of ¥y, ..., ¥y, W1, ..., Wq. Conversely, if Z is in span(¥y, ..., ¥p, W1,.. ., a)s

then T = (c1T1 + -+ + ¢plp) + (d1Wh + - - - + dgilly), so that T is in V + W.
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