Final Practice Exam Linear Algebra

- 1. Answer True or False on the following questions:
- a) If A and B are symmetric $n \times n$ matrices then A + B is also symmetric.
- b) If A is an invertible matrix then $(A^T)^{-1} = (A^{-1})^T$.
- c) For any scalar c, $||c\vec{v}|| = c||\vec{v}||$.
- d) If \vec{x} is orthogonal to every vector in a subspace W of \mathbb{R}^n , then \vec{x} is in W^{\perp} .
- e) The least-squares solution of $A\vec{x} = \vec{b}$ is the point in the image of A closest to \vec{b} .
- f) If three vectors in \mathbb{R}^3 lie in the same plane in \mathbb{R}^3 , then they are linearly dependent.
- g) If $\{\vec{v_1}, \vec{v_2}, \vec{v_3}\}$ is an orthogonal set and if c_1, c_2 , and c_3 are scalars, then $\{c_1\vec{v_1}, c_2\vec{v_2}, c_3\vec{v_3}\}$ is an orthogonal set.
- h) If the columns of an $n \times n$ matrix A are orthogonal, then A is an orthogonal matrix.
- i) Let W be a subspace of \mathbb{R}^n . If $\vec{x} \in \mathbb{R}^n$, then $\vec{x} proj_W \vec{x}$ is not zero.
- j) If $\vec{x}, \vec{y} \in \mathbb{R}^n$, then $||\vec{x} + \vec{y}||^2 = ||\vec{x}||^2 + ||\vec{y}||^2$.
- **2**. Suppose A is a 6×7 matrix that has five pivot columns.
 - What is the rank A?
 - What is the dimension of the row space of A?
 - What is the dimension of ker A?
 - Is $Im(A) = \mathbb{R}^5$?

3. The matrix $A = \begin{bmatrix} 3 & 1 \\ 1 & 3 \end{bmatrix}$ has two eigenvalues. Find the eigenvalues of A, and find the eigenvector associated to each eigenvalue.

4. Let
$$\vec{u_1} = \begin{bmatrix} -1\\4\\-3 \end{bmatrix}$$
, $\vec{u_2} = \begin{bmatrix} 5\\2\\1 \end{bmatrix}$ and $\vec{u_3} = \begin{bmatrix} 3\\-4\\-7 \end{bmatrix}$. Is the set $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ orthogonal?

5. Let $\vec{y} = \begin{bmatrix} 1 \\ 7 \end{bmatrix}$, and $\vec{v} = \begin{bmatrix} -4 \\ 2 \end{bmatrix}$. Let $W = \text{Span}\{\vec{v}\}$.

- What is the orthogonal projection of \vec{y} to W?
- What is the orthogonal projection of \vec{y} to the line through \vec{v} and the origin?
- What is the length of the projection of \vec{y} onto W?
- What is the distance from \vec{y} to W.
- 6. Find an orthogonal basis $\{\vec{u_1}, \vec{u_2}, \vec{u_3}\}$ for the column space of the matrix

$$A = \begin{bmatrix} 3 & -5 & 1 \\ 1 & 1 & 1 \\ 3 & -7 & 8 \end{bmatrix}.$$

7. Let
$$A = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 3 \\ 1 \\ -4 \\ 2 \end{bmatrix}$.

- Find $A^T A$.
- Find $A^T \vec{b}$.
- Find the least squares solution of $A\vec{x} = \vec{b}$.

8. Find the equation y = mx + b of the least-squares line that best fits the data points (2, 3), (3, 2), (5, 1), (6, 0).

- **9**. Prove ker $A = \text{ker}(A^T A)$ for any $m \times n$ matrix A.
- **10**. Find the determinant of

$$\begin{vmatrix} 4 & 0 & -7 & 3 & -5 \\ 0 & 0 & 2 & 0 & 0 \\ 7 & 3 & -6 & 4 & -8 \\ 5 & 0 & 5 & 2 & -3 \\ 0 & 0 & 9 & -1 & 2 \end{vmatrix}$$

11. Let $A = \begin{bmatrix} .75 & .25 \\ .25 & .75 \end{bmatrix}$.

- Find the eigenvalues of A.
- Find the eigenvector associated to each eigenvalue.
- Write A as PDP^{-1} , where D is a diagonal matrix. (Note that you have to find P, D and P^{-1}).
- Show that A^k approaches $\begin{bmatrix} .5 & .5\\ .5 & .5 \end{bmatrix}$ as $k \to \infty$.

12. Consider the polynomials $\mathbf{p_1}(t) = 1 + t$, $\mathbf{p_2}(t) = 1 - t$, $\mathbf{p_3}(t) = 4$, $\mathbf{p_4}(t) = t + t^2$, and $\mathbf{p_5}(t) = 1 + 2t + t^2$, and let H be the subspace of \mathbb{P}_5 spanned by the set $S = {\mathbf{p_1}, \mathbf{p_2}, \mathbf{p_3}, \mathbf{p_4}, \mathbf{p_5}}$. Find a basis for H.

BONUS: December 12 is a popular holiday in Mexico. What is this holiday?.