MATH 77: ALGEBRAIC NUMBER THEORY HOMEWORK 2

(1) Let L be a field extension of K, and $\alpha \in L$. Prove that the minimal polynomial of α over K is irreducible over K.
(2) Let $\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}$ and $\left\{y_{1}, y_{2}, \ldots y_{n}\right\}$ be a bases of a free abelian group G. Let A and be B be the matrices formed of $a_{i j}$ and $b_{i j}$ respective, where $a_{i j}$ and $b_{i j}$ satisfy

$$
y_{i}=\sum_{j} a_{i j} x_{j}, \quad x_{i}=\sum_{j} b_{i j} y_{j}
$$

Show that $A B=I_{n}$.
(3) Which of the following polynomials are irreducible over \mathbb{Z} ?
a) $x^{2}+3$
b) $x^{2}-169$
c) $x^{3}+x^{2}+x+1$
d) $x^{3}+2 x^{2}+3 x+4$.
(4) Find the minimum polynomial over \mathbb{Q} of
a) $\frac{1+i}{\sqrt{2}}$
b) $i+\sqrt{2}$
c) $e^{2 \pi i / 3}+2$.
(5) Express the following polynomials in terms of elementary symmetric polynomials, where this is possible.
a) $t_{1}^{2}+t_{2}^{2}+t_{3}^{2}$
b) $t_{1}^{3}+t_{2}^{3}$
c) $t_{1} t_{2}^{2}+t_{2} t_{3}^{2}+t_{3} t_{1}^{2}$
d) $t_{1}+t_{2}^{2}+t_{3}^{3}$.
(6) Let \mathbb{Z} be a \mathbb{Z}-module with the obvious action. Find all submodules.
(7) Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $p x^{2}+q x+r=0$. Which primes appear in seven or more elements of S ? (Hint: Part of the problem can be reduced by using problem 5 from the previous homework).
BONUS Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?

