MATH 77: ALGEBRAIC NUMBER THEORY **HOMEWORK 2**

- (1) Let L be a field extension of K, and $\alpha \in L$. Prove that the minimal polynomial of α over K is irreducible over K.
- (2) Let $\{x_1, x_2, \ldots, x_n\}$ and $\{y_1, y_2, \ldots, y_n\}$ be a bases of a free abelian group G. Let A and be B be the matrices formed of a_{ij} and b_{ij} respective, where a_{ij} and b_{ij} satisfy

$$y_i = \sum_j a_{ij} x_j, \qquad \qquad x_i = \sum_j b_{ij} y_j,$$

Show that $AB = I_n$.

- (3) Which of the following polynomials are irreducible over \mathbb{Z} ?
 - a) $x^2 + 3$
 - b) $x^2 169$
 - c) $x^3 + x^2 + x + 1$
 - d) $x^3 + 2x^2 + 3x + 4$.
- (4) Find the minimum polynomial over \mathbb{Q} of
 - a) $\frac{1+i}{\sqrt{2}}$
 - b) $i + \sqrt{2}$
 - c) $e^{2\pi i/3} + 2$.
- (5) Express the following polynomials in terms of elementary symmetric polynomials, where this is possible.
 - a) $t_1^2 + t_2^2 + t_3^2$ b) $t_1^3 + t_2^3$

 - c) $t_1 t_2^2 + t_2 t_3^2 + t_3 t_1^2$
 - d) $t_1 + t_2^2 + t_3^3$.
- (6) Let \mathbb{Z} be a \mathbb{Z} -module with the obvious action. Find all submodules.
- (7) Let S be the set of all ordered triples (p, q, r) of prime numbers for which at least one rational number x satisfies $px^2 + qx + r = 0$. Which primes appear in seven or more elements of S? (Hint: Part of the problem can be reduced by using problem 5 from the previous homework).
- BONUS Is there a finite abelian group G such that the product of the orders of all its elements is 2^{2009} ?