MATH 77: ALGEBRAIC NUMBER THEORY **HOMEWORK 3**

- (1) Let \mathbb{A} be the field of algebraic numbers. Show that $[\mathbb{A} : \mathbb{Q}] = \infty$.
- (2) Let $\{\alpha_1, \alpha_2, \dots, \alpha_n\}$ and $\{\beta_1, \beta_2, \dots, \beta_n\}$ be bases of $\mathbb{K} = \mathbb{Q}(\theta)$, and let c_{ik} be rationals such that

$$\beta_k = \sum_{i=1}^n c_{ik} \alpha_i.$$

Show that

$$\Delta[\beta_1, \dots, \beta_n] = (\det(c_i k))^2 \Delta[\alpha_1, \dots, \alpha_n].$$

(3) Let A be a Vandermonde matrix, i.e.,

$$A = \begin{pmatrix} 1 & t_1 & t_1^2 & \dots & t_1^{n-1} \\ 1 & t_2 & t_2^2 & \dots & t_2^{n-1} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ 1 & t_n & t_n^2 & \dots & t_n^{n-1} \end{pmatrix}.$$

Show that

$$\det(A) = \prod_{1 \le i < j \le n} (t_i - t_j).$$

- (4) Which of the following complex numbers are algebraic? Which are algebraic integers?

 - (a) $\frac{355}{113}$. (b) $e^{2\pi i/23}$.
 - (c) $e^{\pi i/23}$.
 - (d) $\sqrt{17} + \sqrt{19}$.

 - (f) $\sqrt{1+\sqrt{2}} + \sqrt{1-\sqrt{2}}$.
- (5) Express $\mathbb{Q}(\sqrt{3}, \sqrt[3]{5})$ in the form $\mathbb{Q}(\theta)$.
- (6) Let $\mathbb{K} = \mathbb{Q}(\sqrt[4]{2})$. Find all monomorphisms $\sigma : \mathbb{K} \to \mathbb{C}$ and the minimal polynoials (over \mathbb{Q}) and field polynomials (over \mathbb{K}) of
 - (i) $\sqrt[4]{2}$,
 - (ii) $\sqrt{2}$,
 - (iii) 2,
 - (iv) $\sqrt{2} + 1$.