MATH 77: ALGEBRAIC NUMBER THEORY **HOMEWORK** 4

(1) Show that there are no nonzero algebraic integers of the form

$$\frac{1}{3}\left(a+b\theta+c\theta^2\right),\,$$

where $a, b, c \in \mathbb{Z}$, $0 \le a, b, c \le 2$ and $\theta = \sqrt[3]{5}$. (Hint: $N(a + b\theta + c\theta^2) = a^3 + 5b^3 + 25c^3 - 15abc$).

(2) Show that there are no nonzero algebraic integers of the form

$$\frac{1}{3}\left(a+bt+cu\right),$$

where $a, b, c \in \mathbb{Z}, 0 \le a, b, c \le 2, t = \sqrt[3]{175}$ and $u = \sqrt[3]{175}$. (3) Compute integral bases and discriminants of

- - (a) $\mathbb{Q}(\sqrt{2},\sqrt{3})$.
 - (b) $\mathbb{Q}(\sqrt[3]{2}).$
- (4) Show that isomorphic number fields have the same discriminant.
- (5) Let $K = \mathbb{Q}(\theta)$ where $\theta \in \mathfrak{O}_K$. Let d be the discriminant of K. Among the elements

$$\frac{1}{d}(a_0+\ldots a_i\theta^i),$$

where $a_i \in \mathbb{Z}$ and $a_i \neq 0$, pick one with minimal value of $|a_i|$ and call it x_i . Do this for $i = 1, ..., n = [K : \mathbb{Q}]$. Show that $\{x_1,\ldots,x_n\}$ is a integral basis.

(6) If $\alpha_1, \ldots, \alpha_n$ are \mathbb{Q} -linearly independent algebraic integers in $\mathbb{Q}(\theta)$, and if

$$\Delta[\alpha_1,\ldots,\alpha_n]=d$$

where d is the discriminant of $\mathbb{Q}(\theta)$, show that $\{\alpha_1, \ldots, \alpha_n\}$ is an integral basis.