MATH 77: ALGEBRAIC NUMBER THEORY HOMEWORK 4

(1) Show that there are no nonzero algebraic integers of the form

$$
\frac{1}{3}\left(a+b \theta+c \theta^{2}\right),
$$

where $a, b, c \in \mathbb{Z}, 0 \leq a, b, c \leq 2$ and $\theta=\sqrt[3]{5}$. (Hint: $\left.N\left(a+b \theta+c \theta^{2}\right)=a^{3}+5 b^{3}+25 c^{3}-15 a b c\right)$.
(2) Show that there are no nonzero algebraic integers of the form

$$
\frac{1}{3}(a+b t+c u)
$$

where $a, b, c \in \mathbb{Z}, 0 \leq a, b, c \leq 2, t=\sqrt[3]{175}$ and $u=\sqrt[3]{175}$.
(3) Compute integral bases and discriminants of (a) $\mathbb{Q}(\sqrt{2}, \sqrt{3})$.
(b) $\mathbb{Q}(\sqrt[3]{2})$.
(4) Show that isomorphic number fields have the same discriminant.
(5) Let $K=\mathbb{Q}(\theta)$ where $\theta \in \mathfrak{O}_{K}$. Let d be the discriminant of K. Among the elements

$$
\frac{1}{d}\left(a_{0}+\ldots a_{i} \theta^{i}\right)
$$

where $a_{i} \in \mathbb{Z}$ and $a_{i} \neq 0$, pick one with minimal value of $\left|a_{i}\right|$ and call it x_{i}. Do this for $i=1, \ldots, n=[K: \mathbb{Q}]$. Show that $\left\{x_{1}, \ldots, x_{n}\right\}$ is a integral basis.
(6) If $\alpha_{1}, \ldots, \alpha_{n}$ are \mathbb{Q}-linearly independent algebraic integers in $\mathbb{Q}(\theta)$, and if

$$
\Delta\left[\alpha_{1}, \ldots, \alpha_{n}\right]=d
$$

where d is the discriminant of $\mathbb{Q}(\theta)$, show that $\left\{\alpha_{1}, \ldots, \alpha_{n}\right\}$ is an integral basis.

