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1 Introduction

Let q ≥ 2 be a fixed integer and let f be an arbitrary complex-valued func-

tion defined on the set of nonnegative integers. We say that f is completely

q-additive if

f(aqj + b) = f(a) + f(b)

for all nonnegative integers a, b, j satisfying b < qj. Given a nonneg-

ative integer n, there exists a unique sequence a0(n), a1(n), a2(n), . . . ,∈
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{0, 1, . . . , q − 1} so that

n =
∞∑

j=0

aj(n)qj. (1)

The right hand side of expression (1) will be called the base q expansion of

n. Using the base q expansion (1), we find that the function f is completely

q-additive if and only if f(0) = 0 and

f(n) =
∞∑

j=1

f(aj(n)).

It follows that a completely q-additive function is completely determined by

its values on the set {0, 1, . . . , q − 1}.

The prototypical example of a completely q-additive function is the base

q sum of digits function sq, which is defined by

sq(n) =
∞∑

j=0

aj(n).

A q-Niven number is a nonnegative integer n that is divisible by sq(n). The

question of the distribution of the q-Niven numbers can be answered by

studying the counting function

Nq(x) = #{0 ≤ n < x : sq(n)|n},

a task which has been undertaken by several authors (see, for example, the

papers of Cooper and Kennedy [1, 2, 3, 4] or De Koninck and Doyon [5]).

The best known result is the asymptotic formula

Nq(x) = (cq + o(1))
x

log x
, where cq =

2 log q

(q − 1)2

q−1∑
j=1

(j, q − 1),
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which was proven only recently by De Koninck, Doyon and Kátai [6], and

independently by Mauduit, Pomerance and Sárközy [8].

Given an arbitrary non-zero, integer-valued, completely q additive func-

tion f , we define an f -Niven number to be a nonnegative integer n that is

divisible by f(n). In the final section of [6] it is suggested that the tech-

niques used therein could be applied to derive an asymptotic expression for

the counting function of the f -Niven numbers,

Nf (x) = # {0 ≤ n < x | f(n)|n} .

It is the goal of this paper to show that, under an additional mild restriction

on f , this is indeed the case. Our main result is the following.

Theorem 1. Let f be an arbitrary non-zero, integer-valued, completely q-

additive function and set

m =
1

q

q−1∑
j=0

f(j) , σ2 =
1

q

q−1∑
j=0

f(j)2 −m2,

F = (f(1), f(2), . . . , f(q − 1)) and

d = gcd {rf(s)− sf(r) | r, s ∈ {1, 2, . . . , q − 1}} .

Assume (F, q − 1) = 1.

(i) If m 6= 0 then for any ε ∈ (0, 1/2)

Nf (x) = cf
x

log x
+ O

(
x

(log x)
3
2
−ε

)
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where

cf =
log q

|m|

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

)
.

The implied constant depends only on f and ε.

(ii) If m = 0 then

Nf (x) = cf
x log log x

(log x)
1
2

+ O

(
x

(log x)
1
2

)

where

cf =

(
log q

2πσ2

) 1
2

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

)
.

The implied constant depends only on f .

Most of the proof of this theorem is a straightforward generalization of

the methods used in [6]. It is the intent of this paper, then, to indicate where

significant and perhaps non-obvious modifications to the original work must

be made. The first notable change is the introduction and use of the quan-

tities d and F . Because d = 0 and F = 1 when f = sq these quantities play

no role in the earlier work.

Finally, in order to shorten the presentation, we have attempted to unify

the m 6= 0 and m = 0 cases for as long as possible. The result is a slightly

different approach in the m 6= 0 case than appears in [6]. The final steps

when m = 0 are entirely new.
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2 Notation

We denote by Z, Z+, Z+
0 , R and C the sets of integers, positive integers, non-

negative integers, real numbers and complex numbers, respectively. For the

remainder of this paper, we fix an integer q ≥ 2 and a non-zero completely

q additive function f : Z+
0 → Z. The variable x will always be assumed real

and positive and n will always be an integer. Following [6] we set

A(x|k, l, t) = #{0 ≤ n < x |n ≡ l (mod k) and f(n) = t},

a(x|t) = #{0 ≤ n < x | f(n) = t}.

As usual, we use the notation F (x) = O(G(x)) (or F (x) � G(x)) to

mean that there is a constant C so that for all sufficiently large x, |F (x)| ≤

CG(x). The constant C and the size of x are allowed to depend on f (and

hence on q), but on no other quantity unless specified.

3 Preliminary Lemmas

For real y we define ||y|| to be the distance from y to the nearest integer.

Lemma 1. Let M = max1≤j≤q−1 |f(j)|. Let s, k ∈ Z+ with (s, k) = 1 and

suppose that there is a pair j1, j2 ∈ {0, 1, . . . , q − 1} so that k - j1f(j2) −

j2f(j1). Then for any ξ ∈ R

max
0≤j≤q−1

∣∣∣∣∣∣∣∣f(j)ξ +
js

k

∣∣∣∣∣∣∣∣ ≥ 1

2Mk
. (2)
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Proof. We first claim that the maximum in question is at least positive. To

see this we argue by contradiction and assume that ||f(j)ξ + js/k|| = 0 for

0 ≤ j ≤ q − 1. Then f(j)ξ + js/k = nj ∈ Z for each j. Solving for ξ and

equating the resulting expressions, we find that if f(j1), f(j2) 6= 0 then

k(nj1f(j2)− nj2f(j1)) = s(j1f(j2)− j2f(j1)). (3)

Since (s, k) = 1, this implies that k|j1f(j2) − j2f(j1), which is impossible.

Since this same condition is trivially verified if f(j1) = 0 or f(j2) = 0, we

have a contradiction in any case.

To prove the lemma we again argue by contradiction. Assume the con-

trary. Then

1

k
≤

∣∣∣∣∣∣∣∣(j1f(j2)− j2f(j1)) s

k

∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣(f(j1)f(j2)ξ +
j1f(j2)s

k

)
−
(

f(j1)f(j2)ξ +
j2f(j1)s

k

)∣∣∣∣∣∣∣∣
≤

∣∣∣∣∣∣∣∣f(j2)

(
f(j1)ξ +

j1s

k

)∣∣∣∣∣∣∣∣+ ∣∣∣∣∣∣∣∣f(j1)

(
f(j2)ξ +

j2s

k

)∣∣∣∣∣∣∣∣ .
By our assumption,

|f(j1)| ≤ M

<
1

2k max0≤j≤q−1 ||f(j)ξ + js/k||

≤ 1

2 ||f(j2)ξ + j2s/k||

and similarly

|f(j2)| <
1

2 ||f(j1)ξ + j1s/k||
.
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Therefore, by properties of || · ||,

1

k
≤ |f(j2)| ·

∣∣∣∣∣∣∣∣f(j1)ξ +
j1s

k

∣∣∣∣∣∣∣∣+ |f(j1)| ·
∣∣∣∣∣∣∣∣f(j2)ξ +

j2s

k

∣∣∣∣∣∣∣∣
≤ 2M max

0≤j≤q−1

∣∣∣∣∣∣∣∣f(j)ξ +
js

k

∣∣∣∣∣∣∣∣
< 2M

1

2Mk

=
1

k

which is a contradiction.

It is proven in [7] that if z1, z2, . . . , zq−1 ∈ C satisfy |zj| ≤ 1 for j =

1, 2, . . . , q − 1. then∣∣∣∣∣1q
(

1 +

q−1∑
j=1

zj

)∣∣∣∣∣ ≤ 1− 1

2q
max

1≤j≤q−1
(1− Re zj). (4)

Since for real y we have ||y||2 � 1 − cos(2πy) and 1 + y ≤ ey, the next

lemma is an immediate consequence.

Lemma 2. Let e(y) = e2πiy. There is a positive constant c1 = c1(f) so that

for any ξ, r ∈ R∣∣∣∣∣1q
q−1∑
j=0

e (f(j)ξ + rj)

∣∣∣∣∣ ≤ exp

(
−c1 max

1≤j≤q−1
||f(j)ξ + rj||2

)
. (5)

4 The distribution of the values of f

4.1 Argument restricted to a congruence class

Let k ∈ Z+, l ∈ Z+
0 and t ∈ Z. Our first goal in this section is to relate

A(x|k, l, t) to the function a(x|t) through a series of reductions on the mod-
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ulus k. The first three reductions are proven exactly as in [6], substituting

our Lemma 2 for their Lemma 3. We state them for the convenience of the

reader.

Reduction 1. Write k = k1k2 where k1 is the largest divisor of k so

that (k1, q) = 1. Then the primes dividing k2 also divide q and we let

h be the smallest positive integer so that k2 divides qh. Since k divides

k1q
h, the congruence class l (mod k) is the union of classes l(j) (mod k1q

h),

j = 1, . . . , qh/k2. For each j write

l(j) = l
(j)
1 + qhl

(j)
2

where 0 ≤ l
(j)
1 < qh. Then

A(x|k, l, t) =

qh/k2∑
j=1

A

(
x− l

(j)
1

qh

∣∣∣∣∣ k1, l
(j)
2 , t− f(l

(j)
1 ).

)

Since (k1, q) = 1, we are led to the next reduction.

Reduction 2. Suppose that (k, q) = 1. Let k = k1k2 where k1 is the

largest divisor of k so that (k1, q− 1) = 1. Then there is a positive constant

c3 = c3(f) so that

A(x|k, l, t) =
1

k1

A(x|k2, l, t) + O
(
x1− c3

log 2k

)
.

Before moving to the next reduction, we note that the primes dividing k2

must also divide q − 1.
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Reduction 3. Suppose that the prime divisors of k also divide q − 1.

Then there is a positive constant c4 = c4(f) so that

A(x|k, l, t) =
(k, q − 1)

k
A(x|(k, q − 1), l, t) + O

(
x1− c4

log 2k

)
.

We have therefore reduced to the case in which the modulus is a divisor of

q − 1.

Reduction 4. We now come to the first new reduction. The proof

closely follows that of Reductions 2 and 3 of [6], substituting our Lemma

1 for their Lemma 1 and our Lemma 2 for their Lemma 3. We therefore

choose to omit it. Suppose that k|q − 1 and let d denote the greatest

common divisor of j1f(j2)− j2f(j1) for j1, j2 ∈ {0, 1, . . . , q−1}. Then there

is a positive constant c5 = c5(f) so that

A(x|k, l, t) =
(k, d)

k
A(x|(k, d), l, t) + O

(
x1−c5

)
.

We note that in the case f = sq we have d = 0, making this reduction

unnecessary. As such, it has no analogue in [6].

Reduction 5. Suppose that k divides (q − 1, d). Then qj ≡ 1 (mod k)

for all j ≥ 1 and j1f(j2) ≡ j2f(j1) (mod k) for all 0 ≤ j1, j2 ≤ q − 1. From

this and the complete q-additivity of f it follows that mf(n) ≡ nf(m)

(mod k) for all m,n ∈ Z+
0 . Let F = (f(1), f(2), . . . , f(q − 1)) and suppose

further that (F, q− 1) = 1. Since the values of f are linear combinations of

f(1), f(2), . . . , f(q − 1) with nonnegative integer coefficients, the condition
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(F, q−1) = 1 implies that we can find an m ∈ Z+ so that (f(m), q−1) = 1.

Therefore if n ∈ Z+
0 satisfies f(n) = t we have mt = mf(n) ≡ nf(m)

(mod k) and it follows that

A(x|k, l, t) =


a(x|t) if mt ≡ lf(m) (mod k),

0 otherwise.

This is the analogue of the final reduction in section 4.5 of [6].

4.2 Unrestricted argument

We now turn to the distribution of the values of f when its argument is

free to take on any value. We let m and σ denote the mean and standard

deviation of f on the set D = {0, 1, . . . , q − 1} of base q digits. That is,

m =
1

q

q−1∑
j=0

f(j) , σ2 =
1

q

q−1∑
j=0

f(j)2 −m2.

We also set

Nx =

⌊
log x

log q

⌋
where byc is the greatest integer not exceeding y.

Following [1], we view D as a probability space in which each element

is assigned a measure of 1/q. We use the digits of the base q expansion (1)

to identify the set of nonnegative integers n strictly less than qN (N ∈ Z+)

with the product space DN . In this way f can be viewed as the random

variable on DN obtained by summing together N independent copies of f
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acting on D alone. Applying Theorem 15, Chapter III of [9] in this setting,

it is not difficult to deduce the next result.

Proposition 1. Let ε ∈ (0, 1/2) and set I = [mNx−N
1/2+ε
x , mNx+N

1/2+ε
x ].

Then

#{0 ≤ n < x|f(n) 6∈ I} � x

(log x)2

the implied constant depending only on f and ε.

We remark that in the case f = sq, this proposition follows from Lemma

4 of [8]. In fact, using the line of reasoning we have suggested, it is possible

to obtain a more general result very similar to that lemma in which N
1/2+ε
x

is replaced by N
1/2
x λx, where λx = o(N

1/2
x ).

As observed in [6] in the case f = sq, Theorem 6, Chapter VII of [9] can

be used to obtain the following result.

Proposition 2. If (f(1), f(2), . . . , f(q − 1)) = 1 then uniformly for t ∈ Z

we have

a(x|t) =
x

σ
√

Nx

ϕ

(
t−mNx

σ
√

Nx

)
+ O

(
x

Nx

)
where ϕ(y) = (2π)−1/2e−y2/2. The implied constant depends only on f .

Corollary 1. If F = (f(1), f(2), . . . , f(q − 1)) then

a(x|t) =
Fx

σ
√

Nx

ϕ

(
t−mNx

σ
√

Nx

)
+ O

(
x

Nx

)
when t ≡ 0 (mod F ) and a(x|t) = 0 otherwise.

Proof. Apply the proposition to the function g = f/F .
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5 Proof of Theorem 1

It suffices to consider the case in which m ≥ 0, since Nf (x) = N−f (x).

Fixing ε ∈ (0, 1/2), according to Proposition 1 we have

Nf (x) =
∑
t∈I

t≡0 (mod F )

A(x||t|, 0, t) + O

(
x

(log x)2

)
. (6)

As in Section 5 of [6], one can show that Reductions 1 through 5 together

with the corollary to Proposition 2 yield

A(x||t|, 0, t) =
(t, q − 1, d)

|t|
a(x|t) + O

(
x log Nx

tNx

)
(7)

uniformly for (nonzero) t ∈ I. Since (t, q−1, d) depends only on the residue

of t (mod q − 1), substitution of (7) into (6) yields

Nf (x) =

q−1∑
j=1

(j, q − 1, d)
∑
t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

+ O

(
x log Nx

Nx

E1(x)

)
(8)

where

E1(x) =


N

ε−1/2
x if m > 0,

log Nx if m = 0.

Lemma 3. For j = 1, 2, . . . , q − 1 we have

∑
t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

=
1

q − 1

∑
t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

+ O

(
x

Nx

E2(x)

)

where

E2(x) =


N

ε−1/2
x if m > 0,

N
1/2
x if m = 0.
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Proof. Since we have assumed (F, q−1) = 1, for each j = 1, 2, . . . , q−1 there

is a unique bj (mod F (q − 1)) so that the two simultaneous congruences

t ≡ 0 (mod F ) and t ≡ j (mod q−1) are equivalent to the single congruence

t ≡ bj (mod F (q − 1)). The corollary to Proposition 2 implies that for

t, k ≡ 0 (mod F ) we have

a(x|t + k)

|t + k|
=

a(x|t)
|t|

+ O

(
x

|t| log x
+

x

t2(log x)1/2

)
(9)

when t + k 6= 0, the implied constant depending only on f and k.

When m > 0 we therefore have

∑
t∈I
t6=0

t≡0 (mod F )
t≡j (mod q−1)

a(x|t)
|t|

=
∑
t∈I

t≡bj (mod F (q−1))

a(x|t)
t

=
1

q − 1

∑
t∈I

t≡bj (mod F (q−1))

q−2∑
k=0

a(x|t + kF )

t + kF

+O

(
x

N
3/2−ε
x

)

=
1

q − 1

∑
s∈I

s≡0 (mod F )

a(x|s)
s

+ O

 ∑
s∈J

s≡0 (mod F )

a(x|s)
s


+O

(
x

N
3/2−ε
x

)
where J is the set of integers with distance at most qF from the endpoints

of I. Since a(x|s) � x/N
1/2
x , the sum over J contributes no more than the

second error term, proving the lemma in this case.

When m = 0 we may carry through the same analysis, being careful in

the second step to omit from the summation the single value of t for which
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t + kF = 0. This introduces an error of size O(x/N
1/2
x ), which is consistent

with the statement of the lemma.

Combining Lemma 3 with equation (8) we can now complete the proof.

When m > 0 we have

Nf (x) =

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

) ∑
t∈I

t≡0 (mod F )

a(x|t)
t

+ O

(
x log Nx

N
3/2−ε
x

)

=
1

mNx

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

) ∑
t∈I

t≡0 (mod F )

a(x|t)

+O

(
x log log x

(log x)3/2−ε

)
=

log q

m log x

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

) ∑
t∈I

t≡0 (mod F )

a(x|t)

+O

(
x log log x

(log x)3/2−ε

)
=

log q

m

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

)
x

log x
+ O

(
x log log x

(log x)3/2−ε

)

where in the final line we have used Proposition 1 to replace the sum with

x + O(x/(log x)2). Since ε ∈ (0, 1/2) was arbitrary, we may discard the

log log x term in the error, giving the stated result.

When m = 0 we have

Nf (x) =

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

) ∑
t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

+ O

(
x

N
1/2
x

)
(10)

Set ε = 1/4 for convenience. Writing t = Fs and using the corollary to
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Proposition 2 we obtain

∑
t∈I
t6=0

t≡0 (mod F )

a(x|t)
|t|

=
2x

σ
√

Nx

∑
1≤s≤N

3/4
x /F

1

s
ϕ

(
sF

σ
√

Nx

)
+ O

(
x log Nx

Nx

)
. (11)

Now

∑
1≤s≤N

3/4
x /F

1

s
ϕ

(
sF

σ
√

Nx

)
=

∫ N
3/4
x /F

1

1

s
ϕ

(
sF

σ
√

Nx

)
ds + O (1)

=
1√
2π

∫ N
1/4
x /σ

√
2

F/σ
√

2Nx

e−u2

u
du + O (1)

=
1√
2π

∫ 1

F/σ
√

2Nx

e−u2

u
du + O (1)

=
1√
2π

∫ 1

F/σ
√

2Nx

1

u
du + O (1)

=
1

2
√

2π
log Nx + O (1)

=
1

2
√

2π
log log x + O (1) .

Returning to equations (10) and (11) we find that

Nf (x) =
1

(2πσ2)1/2

(
1

q − 1

q−1∑
j=1

(j, q − 1, d)

)
x log log x

N
1/2
x

+ O

(
x

N
1/2
x

)

=

(
log q

2πσ2

)1/2
(

1

q − 1

q−1∑
j=1

(j, q − 1, d)

)
x log log x

(log x)1/2

+O

(
x

(log x)1/2

)

which concludes the proof.
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