On the counting function for the generalized

Niven numbers

R. C. Daileda, Jessica Jou, Robert Lemke-Oliver,

Elizabeth Rossolimo, Enrique Trevino

1 Introduction

Let ¢ > 2 be a fixed integer and let f be an arbitrary complex-valued func-
tion defined on the set of nonnegative integers. We say that f is completely
q-additive if

flaq’ +b) = f(a) + f(b)
for all nonnegative integers a,b,j satisfying b < ¢’. Given a nonneg-

ative integer n, there exists a unique sequence ag(n),ai(n),az(n),..., €
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{0,1,...,qg— 1} so that

n= Zaj(n)qj. (1)

=0

J
The right hand side of expression (1) will be called the base q expansion of
n. Using the base ¢ expansion (1), we find that the function f is completely

g-additive if and only if f(0) = 0 and

Fm) = > flasw))

j=1

It follows that a completely g-additive function is completely determined by
its values on the set {0,1,...,q — 1}.
The prototypical example of a completely g-additive function is the base

g sum of digits function s,, which is defined by

() = ay(n).

A g-Niven number is a nonnegative integer n that is divisible by s,(n). The
question of the distribution of the ¢-Niven numbers can be answered by

studying the counting function
Ny(z) =#{0<n <z : s4(n)n},

a task which has been undertaken by several authors (see, for example, the
papers of Cooper and Kennedy [1, 2, 3, 4] or De Koninck and Doyon [5]).

The best known result is the asymptotic formula

Ny(z) = (cq + 0(1))

2logq <=
, where ¢, = 84 Z(j,q - 1),
—1

log x (g—1)? =
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which was proven only recently by De Koninck, Doyon and Katai [6], and
independently by Mauduit, Pomerance and Sarkozy [8].

Given an arbitrary non-zero, integer-valued, completely ¢ additive func-
tion f, we define an f-Niven number to be a nonnegative integer n that is
divisible by f(n). In the final section of [6] it is suggested that the tech-
niques used therein could be applied to derive an asymptotic expression for

the counting function of the f-Niven numbers,

Ny(z) = #{0<n <z|f(n)n}.

It is the goal of this paper to show that, under an additional mild restriction

on f, this is indeed the case. Our main result is the following.

Theorem 1. Let f be an arbitrary non-zero, integer-valued, completely q-

additive function and set

F=01),f2),....fg=1)) and
d=ged{rf(s)—sf(r)|r,se{1,2,...,q—1}}.
Assume (F,q—1) = 1.

(1) If m # 0 then for any € € (0,1/2)

T T
Ny(z) = T
r() Cfloga: 0 <<10gx)g—s>
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where

-1

log q 1 .

= — -1 :

&= Tl q_lz(m d)
J=1

The implied constant depends only on f and e.

(ii) If m =0 then

where

log g 2 1 &
- — NGg-1.d) ).
cf (%02) (q — Z(J,q ,d)>

J=1

The implied constant depends only on f.

Most of the proof of this theorem is a straightforward generalization of
the methods used in [6]. It is the intent of this paper, then, to indicate where
significant and perhaps non-obvious modifications to the original work must
be made. The first notable change is the introduction and use of the quan-
tities d and F'. Because d = 0 and F' = 1 when f = s, these quantities play
no role in the earlier work.

Finally, in order to shorten the presentation, we have attempted to unify
the m # 0 and m = 0 cases for as long as possible. The result is a slightly
different approach in the m # 0 case than appears in [6]. The final steps

when m = 0 are entirely new.
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2 Notation

We denote by Z, Z", Z$ , R and C the sets of integers, positive integers, non-
negative integers, real numbers and complex numbers, respectively. For the
remainder of this paper, we fix an integer ¢ > 2 and a non-zero completely
q additive function f : ZJ — Z. The variable z will always be assumed real

and positive and n will always be an integer. Following [6] we set

Azlk,l,t) = #{0<n<z|n=1 (modk)and f(n)="1t},
a(zlt) = #{0<n<z|f(n)=t}.

As usual, we use the notation F(z) = O(G(x)) (or F(z) < G(x)) to
mean that there is a constant C' so that for all sufficiently large x, |F(x)| <
CG(z). The constant C' and the size of x are allowed to depend on f (and

hence on ¢), but on no other quantity unless specified.

3 Preliminary Lemmas

For real y we define ||y|| to be the distance from y to the nearest integer.

Lemma 1. Let M = maxi<j<,1|f(j)|. Let s,k € Zt with (s,k) =1 and
suppose that there is a pair ji,jo € {0,1,...,q — 1} so that k1 j1f(j2) —
Jof(j1). Then for any & € R

. js 1
f(])f*'? > Mk (2)

max
0<j<g—-1




6 Ryan C. Daileda et al.

Proof. We first claim that the maximum in question is at least positive. To
see this we argue by contradiction and assume that || f(j)¢ + js/k|| = 0 for
0<j<gq-—1. Then f(§)§+ js/k = n; € Z for each j. Solving for £ and

equating the resulting expressions, we find that if f(j1), f(j2) # 0 then

k(n f(G2) = 15, f(1) = s(1f (G2) = J2f (1)) (3)

Since (s, k) = 1, this implies that k|71 f(j2) — j2f (j1), which is impossible.
Since this same condition is trivially verified if f(j;) = 0 or f(j2) = 0, we
have a contradiction in any case.

To prove the lemma we again argue by contradiction. Assume the con-

trary. Then
1 < (J1.f (2) —kaf(ﬁ)) s
= (| (st + 2502 — (stistig + 2290 |
< f(j2)<f(j1)§+‘%)H Hf]l ( J2§+@)"

By our assumption,

|f(j1)] M

IN

1
2k maxo<j<q—1 || f(5)€ + js/k||
1

2| f(j2)€ + jas/kl|

and similarly

1

[f(2)l < 5 £ (G1)E + jrs/k||
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Therefore, by properties of || - ||,

1 ) S
A < |f(]2)|‘Hf( + £ ()| Hfbf‘f‘%
< ] 47
< 2M0§I§1§§_1 f(J)£+ k
1
< 2M_2Mk
1
which is a contradiction. O

It is proven in [7] that if 21, 29,..., 2,1 € C satisfy |z;] < 1 for j =

1,2,...,q—1. then

1 i
- <1 + Z Zj)
q s

Since for real y we have ||y||> < 1 — cos(2my) and 1+ y < €Y, the next

1
<1-—— - ).
1 % | Joax 1(1 Re z;) (4)

lemma is an immediate consequence.

2miy

Lemma 2. Let e(y) = e*™. There is a positive constant ¢c; = c1(f) so that

for any &, r € R

q—1
S0+ )| < cap (—er max e+ riIP). 9
7=0

4 The distribution of the values of f

4.1 Argument restricted to a congruence class

Let k € ZT, 1 € Z$ and t € Z. Our first goal in this section is to relate

A(z|k,l,t) to the function a(z|t) through a series of reductions on the mod-
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ulus k. The first three reductions are proven exactly as in [6], substituting
our Lemma 2 for their Lemma 3. We state them for the convenience of the
reader.

Reduction 1. Write £k = kiky where £y is the largest divisor of k so
that (k1,q) = 1. Then the primes dividing ks also divide ¢ and we let
h be the smallest positive integer so that k, divides ¢". Since k divides
k1q", the congruence class [ (mod k) is the union of classes ) (mod k;¢"),

j=1,...,¢"/ky. For each j write
19 = 10 1 )
where 0 < lgj) < ¢". Then

q" /ks _ZJ)
A(zlk, 1,t) = Z A

ey 1) ¢ — f(l“’).)

Since (k1,q) = 1, we are led to the next reduction.

Reduction 2. Suppose that (k,q) = 1. Let k = kjky where k; is the
largest divisor of k so that (k1,¢—1) = 1. Then there is a positive constant

c3 = c3(f) so that

1
Ak, 1) = -~ A(zlkz, 1) + O (xl—f> ‘

1

Before moving to the next reduction, we note that the primes dividing k-

must also divide ¢ — 1.
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Reduction 3. Suppose that the prime divisors of k also divide ¢ — 1.

Then there is a positive constant ¢, = c4(f) so that

(kaq_

Atalk, ) = B gk, — 1),1,0) + 0 (1 55).

We have therefore reduced to the case in which the modulus is a divisor of
qg— 1.

Reduction 4. We now come to the first new reduction. The proof
closely follows that of Reductions 2 and 3 of [6], substituting our Lemma
1 for their Lemma 1 and our Lemma 2 for their Lemma 3. We therefore
choose to omit it. Suppose that k|¢g — 1 and let d denote the greatest
common divisor of jy f(j2) — jof (j1) for ji, jo € {0,1,...,¢—1}. Then there

is a positive constant c¢; = ¢5(f) so that

Alz|k,1,t) = @A(x\(k,d), Lt)+ O (z'7%).

We note that in the case f = s, we have d = 0, making this reduction
unnecessary. As such, it has no analogue in [6].

Reduction 5. Suppose that k divides (¢ — 1,d). Then ¢/ =1 (mod k)
for all 7 > 1 and 71 f(j2) = 72f(j1) (mod k) for all 0 < j1,75 < ¢— 1. From
this and the complete g-additivity of f it follows that mf(n) = nf(m)
(mod k) for all m,n € Zg. Let F = (f(1), f(2),...,f(g— 1)) and suppose
further that (F,q— 1) = 1. Since the values of f are linear combinations of

f(), f(2),..., f(g — 1) with nonnegative integer coefficients, the condition
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(F,q—1) = 1 implies that we can find an m € Z* so that (f(m),q—1) = 1.
Therefore if n € Z§ satisfies f(n) = t we have mt = mf(n) = nf(m)

(mod k) and it follows that

a(z|t) ifmt=1f(m) (mod k),
A(zlk, 1, t) =

0 otherwise.

This is the analogue of the final reduction in section 4.5 of [6].

4.2 Unrestricted argument

We now turn to the distribution of the values of f when its argument is
free to take on any value. We let m and o denote the mean and standard

deviation of f on the set D = {0,1,...,q — 1} of base ¢ digits. That is,

1 - 2 15 2 2
m==Y f(j), 0 == f()*—m
4= 4=

We also set

=[]
where |y| is the greatest integer not exceeding y.
Following [1], we view D as a probability space in which each element
is assigned a measure of 1/q. We use the digits of the base ¢ expansion (1)
to identify the set of nonnegative integers n strictly less than ¢ (N € Z7)
with the product space DV. In this way f can be viewed as the random

variable on D obtained by summing together N independent copies of f
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acting on D alone. Applying Theorem 15, Chapter III of [9] in this setting,
it is not difficult to deduce the next result.

Proposition 1. Let € € (0,1/2) and set I = [mN,— N2/, mN, + Na/>™.
Then

#{0<n<alf(n) g I} <

x
(log x)?
the implied constant depending only on f and €.

We remark that in the case f = s,, this proposition follows from Lemma
4 of [8]. In fact, using the line of reasoning we have suggested, it is possible
to obtain a more general result very similar to that lemma in which Ni/ e
is replaced by Ni/2)\,, where A, = 0(N§/2).

As observed in [6] in the case f = s,, Theorem 6, Chapter VII of [9] can

be used to obtain the following result.

Proposition 2. If (f(1), f(2),...,f(g—1)) = 1 then uniformly fort € Z

we have

(zt) T t—mN, L0 T
a(z|t) = -
U\/chp oV N, N,
where o(y) = (2m)"2e7¥*/2. The implied constant depends only on f.

Corollary 1. If F'= (f(1), f(2),..., f(¢ — 1)) then

atolt) = oo () o ()

when t =0 (mod F) and a(z|t) = 0 otherwise.

Proof. Apply the proposition to the function g = f/F. ]
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5 Proof of Theorem 1

It suffices to consider the case in which m > 0, since Ny(x) = N_(z).

Fixing € € (0,1/2), according to Proposition 1 we have

Ny(z) = Z A(x||t\,0,t)+0(@). (6)

t=0 (mod F)

As in Section 5 of [6], one can show that Reductions 1 through 5 together

with the corollary to Proposition 2 yield

A(z|[t],0,) = W@(:ﬁlﬂ 40 (ﬂ:ﬁN) (7)

uniformly for (nonzero) ¢ € I. Since (t,q—1,d) depends only on the residue

of t (mod ¢ — 1), substitution of (7) into (6) yields

V=Xt Y io(TERRw) @

t#0
t=0 (mod F)
t=j (mod ¢g—1)

where
N2 it m >0,
Ey(z) =
log N, itm=0.

Lemma 3. For j =1,2,...,q— 1 we have

a(x|t) 1 a(x|t) x
= O|(—F
2 T T 2 @ tolmBe
tel tel

t#0 t#0
t=0 (mod F) t=0 (mod F)

t=j (mod g—1)

where

NY2 o ifm >0,

N2 ifm=o0.
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Proof. Since we have assumed (F,q—1) = 1, foreach j = 1,2,...,g—1 there
is a unique b; (mod F(q — 1)) so that the two simultaneous congruences
t=0 (mod F)andt=j (mod g—1) are equivalent to the single congruence
t = b; (mod F(q —1)). The corollary to Proposition 2 implies that for

t,k =0 (mod F) we have

a(x|t+k)_a(x\t>+0( L, 7 ) (9)

It + k| |¢] [t|logx  t2(log x)'/2

when t 4+ k # 0, the implied constant depending only on f and k.

When m > 0 we therefore have

a(x|t a(x|t
5 (|T|)‘ >

tel tel

t=0 t(fr?od F) tEbj (mod F(g—1))
t=j (mod g—1)
2
1 Z QX: a(zlt + kF)
=1 4 tFRF

t=b; (mod F(q—1))

X
+O <N3/2—5)

SR G B SGs

q sel seJ
s=0 (mod F) s=0 (mod F)

xr
+O <N3/2—e)

where J is the set of integers with distance at most ¢F' from the endpoints

of I. Since a(z|s) < x/Nz'?, the sum over .J contributes no more than the
second error term, proving the lemma in this case.
When m = 0 we may carry through the same analysis, being careful in

the second step to omit from the summation the single value of ¢ for which
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t+ kF = 0. This introduces an error of size O(x /Na%/ %), which is consistent

with the statement of the lemma. OJ

Combining Lemma 3 with equation (8) we can now complete the proof.

When m > 0 we have

1 a(xlt) xlog N,
Ny(x) = (q_—I;(],q—LdO ze; . +0(w)

t=0 (mod F)

tel
t=0 (mod F)

- ((1%1 <j,q—1,d>> > alal)

-1
log q 1 <«
= 7, —1,d a(z|t
T e D IYERRT) B SRIEE
xloglogx
(o)

t=0 (mod F)
~ logg 1 q_1<, 1) T o xloglog x
= " _q 1« J>4q ’ 10g T (1Og l‘)3/2_€

Jj=1

where in the final line we have used Proposition 1 to replace the sum with
z + O(z/(logx)?). Since € € (0,1/2) was arbitrary, we may discard the
loglog x term in the error, giving the stated result.

When m = 0 we have

Ny(z) = (L Z_:(j,q— Ld)) > a(ﬁ:t) +0 (Nf/z) (10)

¢— 1o
t#0
t=0 (mod F)

Set € = 1/4 for convenience. Writing ¢ = F's and using the corollary to
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Proposition 2 we obtain

> w2, e law) o ()

150 1<s<N2/4F

t=0 (mod F)

Now

DY (0 R Y (0 PATS

1<s<N2/*/F
N. /4/0\/5 7u

\V 27T //a\/i U

u2

du+ O (1)

= / o M)

1
—du+ 0O (1
%/F/gﬁu 1)

1
— — logN,+0(1
Worke (1)

1
— loglogz + O (1).
2as gl (1)

Returning to equations (10) and (11) we find that

1 1 X xloglog x x
Ni(@) = Gromim <q — 2 - 1vd)) e ¢ <N$/2

j=1
log ¢\ "/ 1 xloglogx
= _ _1.d) | 2280
(2%02> q—ljz;(J7q 'd) (log x)1/2
x
0 ()

which concludes the proof.

15

(11)

)



16 Ryan C. Daileda et al.

References

[1] Cooper, C. N.; Kennedy, R. E., On the natural density of the Niven
numbers, College Math. J. 15 (1984), 309-312.

[2] Cooper, C. N.; Kennedy, R. E., On an asymptotic formula for the Niven
numbers, Internat. J. Math. Sci. 8 (1985), 537-543.

[3] Cooper, C. N.; Kennedy, R. E., A partial asymptotic formula for the
Niven numbers, Fibonacci Quart. 26 (1988), 163-168.

[4] Cooper, C. N.; Kennedy, R. E., Chebyshev’s inequality and natural den-
sity, Amer. Math. Monthly 96 (1989), 118-124.

[5] De Koninck, J. M.; Doyon, N., On the number of Niven numbers up to
x, Fibonacci Quart. 41 (5) (2003), 431-440.

[6] De Koninck, J.-M.; Doyon, N.; Kétai, 1., On the counting function for
the Niven numbers, Acta Arithmetica 106 (3) (2003), 265-275.

[7] Delange, H., Sur les fonctions q-additives ou q-multiplicatives, Acta
Arithmetica 21 (1972), 285-298.

[8] Mauduit, C.; Pomerance, C.; Sarkozy, A., On the distribution in residue

classes of integers with a fired sum of digits, Ramanujan J. 9 (1-2)

(2005), 45-62.



The counting function for the generalized Niven numbers 17

[9] Petrov, V. V., Sums of Independent Random Variables, Ergebnisse der

Mathematik und ihrer Grenzgebiete 82, Springer, 1975.

Mathematics Department, Trinity University, One Trinity Place, San
Antonio, TX 78212-7200

E-mail: rdaileda@trinity.edu

Penn State University Mathematics Department, University Park, State
College, PA 16802

E-mail: jjj1730@psu.edu

Department of Mathematics, Rose-Hulman Institute of Technology, 5000
Wabash Avenue, Terre Haute, IN 47803

E-mail: lemkeorj@rose-hulman.edu

Department of Mathematics and Statistics, Lederle Graduate Research
Tower, Box 34515, University of Massachusetts Amherst, Amherst, MA
01003-9305

E-mail: erossoli@student.umass.edu

Department of Mathematics, 6188 Kemeny Hall, Dartmouth College,
Hanover, NH 03755-3551

E-mail: enrique.trevino@dartmouth.edu



