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Niven Numbers

A Niven number is a number whose sum of digits divides itself.

A base q Niven number is a number n whose sum of digits
base q divides the number n.
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Counting Function of Niven Numbers

Introduced by Ivan Niven at a lecture in 1977.
Nq(x) is the number of base q Niven numbers less than x
Kennedy and Cooper show the natural density of Niven
numbers is 0
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Asymptotic Formula Counting Function

De Koninck, Doyon and Kátai in 2003 showed

Nq(x) = (cq + o(1))
x

log x

where

cq =
2 log q

(q − 1)2

q−1∑
j=1

(j ,q − 1)
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Asymptotic Formula Counting Function

Independently proven by Mauduit, Pomerance and Sarkozy
(with an improvement in the error term)

Nq(x) = cq
x

log x
+ O

(
x

(log x)
9
8

)
In our work we improve the exponent in the log

of the error term from 9
8 to (3

2 − ε)

Enrique Treviño On the Counting Function of Generalized Niven Numbers



Niven Numbers
Generalized Niven Numbers

Completely q-Additive Functions

Let q ≥ 2 be a fixed integer and let f be an arbitrary
complex-valued function defined on the set of nonnegative
integers.
We say that f is completely q-additive if

f (aqj + b) = f (a) + f (b)

for all nonnegative integers a, b, j satisfying b < qj
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Completely q-Additive Functions

A function f is completely q-additive if and only if f (0) = 0 and

f (n) = f (
∞∑

j=0

aj(n)qj) =
∞∑

j=0

f (aj(n))

Sum of digits base q is an example of a completely q-additive
function
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Generalized Niven Numbers

A number n is an f -Niven number if f (n) divides n.

Let Nf (x) be the number of f -Niven numbers n ≤ x .

What can we say about this counting function?
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Asymptotic Formula for Generalized Niven Numbers

Let f be an arbitrary non-zero, integer-valued, completely
q-additive function and set

m =
1
q

q−1∑
j=0

f (j),

σ2 =
1
q

q−1∑
j=1

f (j)2 −m2, F =
(
f (1), f (2), . . . , f (q − 1)

)
and

assume (F ,q − 1) = 1.

Enrique Treviño On the Counting Function of Generalized Niven Numbers



Niven Numbers
Generalized Niven Numbers

Asymptotic Formula for Generalized Niven Numbers

Let d = gcd{r f (s)− s f (r)
∣∣ r , s ∈ {0,1, . . . ,q − 1}}

If m 6= 0 then for any ε ∈ (0, 1
2)

Nf (x) = cf
x

log x
+ O

(
x

(log x)
3
2−ε

)
where

cf =
log q
|m|

( 1
q − 1

q−1∑
j=1

(j ,q − 1,d)
)
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Asymptotic Formula for Generalized Niven Numbers

If m = 0 then

Nf (x) = cf
x log log x

(log x)
1
2

+ O
(

x

(log x)
1
2

)
where

cf =
( log q

2πσ2

) 1
2
( 1

q − 1

q−1∑
j=0

(j ,q − 1,d)
)
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Outline of Proof

Let A(x
∣∣k , l , t) = #{0 ≤ n ≤ x

∣∣ n ≡ l mod k , f (n) = t}
α(x

∣∣t) = #{0 ≤ n ≤ x
∣∣ f (n) = t}

Nf (x) =
∞∑

t=−∞
A(x

∣∣|t |,0, t)
Change interval in the sum to make it more manageable
Reduce A(x

∣∣|t |,0, t) to α(x
∣∣t)

Use the Central Limit Theorem on α(x
∣∣t)
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Outline of Proof

Reducing A(x
∣∣|k , l , t) to α(x

∣∣t) takes five steps:
Let k = t1k3 with t1 the largest integer such that (t1,q) = 1.
Now you can transfrom the problem of A(x

∣∣k , l , t) to
A(x

∣∣t1, l , t)
Let t1 = k1k2 with k1 largest such that (k1,q − 1) = 1. Now
you can transform A(x

∣∣t1, l , t) to A(x
∣∣k2, l , t)

Transform from A(x
∣∣k2, l , t) to A(x

∣∣(k ,q − 1), l , t)
Transfrom from A(x

∣∣(k ,q − 1), l , t) to A(x
∣∣(k ,q − 1,d), l , t)

Transform from A(x
∣∣(k ,q − 1,d), l , t) to α(x

∣∣t) using that
mf (n) ≡ nf (m) mod a if a

∣∣(q − 1,d)
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Examples

If f is the sum of digits, then we have the asymptotic
proven by De Koninck, Doyon and Kátai

If f (x) =

{
1 if x = 1
0 if x 6= 1 and x < q

The asymptotics for this would be q log q
x

log x
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Examples

If f is the sum of the squares of the digits, then the asymptotic
formula for its counting function is

6 log q
(q − 1)(2q − 1)

x
log x

if q is even

9 log q
(q − 1)(2q − 1)

x
log x

if q is odd
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