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1 Introduction

Consider the following puzzle submitted by Dean Ballard to the Riddler column on the FiveThirtyEight
website [15]:

King Auric adored his most prized possession: a set of perfect spheres of solid gold. There was
one of each size, with diameters of 1 centimeter, 2 centimeters, 3 centimeters, and so on. Their
brilliant beauty brought joy to his heart. After many years, he felt the time had finally come
to pass the golden spheres down to the next generation – his three children. He decided it was
best to give each child precisely one-third of the total gold by weight, but he had a difficult time
determining just how to do that. After some trial and error, he managed to divide his spheres
into three groups of equal weight. He was further amused when he realized that his collection
contained the minimum number of spheres needed for this division. How many golden spheres
did King Auric have?

The puzzle translates into finding the smallest positive integer n such that 13, 23, . . . , n3 can be partitioned
into 3 sets where each set has the same sum. We can generalize to the following questions regarding
partitioning the first n k-powers into m sets of equal sum.

Questions. Let k ≥ 1 and m ≥ 2 be integers. For a positive integer n, consider the set of k-powers
Sn,k = {1k, 2k, . . . , nk}.

1. Is there a positive integer n such that Sn,k can be partitioned into m sets where the sum of the elements
in each set is the same?

2. If such an n exists, what is the smallest possible n?

3. Can we classify all n for which a partition exists?

These questions are closely related to a famous problem sometimes referred to as the Prouhet-Tarry-
Escott (PTE) problem, but it goes all the way back to two letters between Euler and Goldbach [8, 9]. The
PTE problem asks to find integers n, and aij for i ∈ {1, 2, . . . , n}, j ∈ {1, 2, . . . ,m}1 such that

n∑
j=1

a1j =

n∑
j=1

a2j = · · · =
n∑
j=1

amj

n∑
j=1

a21j =

n∑
j=1

a22j = · · · =
n∑
j=1

a2mj

...
n∑
j=1

ak1j =

n∑
j=1

ak2j = · · · =
n∑
j=1

akmj . (1)

1Most people use PTE to refer to the problem for m = 2, but we want to consider the more general case in this paper.
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The trivial PTE solutions are those for which there is an i and a j 6= i for which the sets {ai1, ai2, . . . , ain},
{aj1, aj2, . . . , ajn} are the same. Let P (k,m) be the smallest positive integer n such that there is a nontrivial
solution to (1). It has been shown that P (k,m) ≥ k + 1, and in fact P (k,m) = k + 1 for s ≤ 10 or s = 12
and m = 2, or for k ∈ {2, 3, 5} for any m (see [3] for more details on the computational aspects of finding
P (k,m) and [13] for a very thorough review of all the literature on the problem). In general, it is hard to
compute P (k,m), but Prouhet [12] claimed the following theorem which yields P (k,m) ≤ mk.

Theorem A. For each integer i ∈ {0, 1, . . . ,mk+1 − 1}, consider i written in base m. Let s(i) be the
sum of the base m digits of i. Let Aj be the set of integers i such that s(i) ≡ j mod m. Then for every
j, ` ∈ {0, 1, 2, . . . ,m− 1} and every t ∈ {0, 1, . . . , k}, we have∑

i∈Aj

it =
∑
i∈A`

it.

In other words, the sets Ai form a partition of {0, 1, . . . ,mk+1 − 1} where the sums of like powers of each
set are all equal. Lehmer [10] presented the first published proof of Theorem A in 1947. Since then, distinct
proofs have been given by Wright [18] in 1948, Roberts [14] in 1965, and Nguyen [11] in 2016. Note that
Theorem A certainly answers Question 1 above: If n = mk+1−1, then Sn,k can be partitioned into m pieces
with equal sum.

The following proposition allows us to make some headway on our Questions 2 and 3.

Proposition 1. Let m ≥ 2 and k ≥ 1 be positive integers. Let N,n be positive integers. Suppose we can
partition the set {n, n−1, . . . , n+1−N} into m sets A1,k, A2,k, . . . , Am,k such that for all integers t satisfying
0 ≤ t ≤ k, and all i, j ∈ {1, 2, . . . ,m} we have∑

a∈Ai,k

at =
∑
b∈Aj,k

bt.

Then, we can partition {n, n− 1, . . . , n+ 1−mN} into m sets A1,k+1, A2,k+1, . . . , Am,k+1 such that for all
integers t satisfying 0 ≤ t ≤ k + 1, and all i, j ∈ {1, 2, . . . ,m} we have∑

a∈Ai,k

at =
∑
b∈Aj,k

bt.

Proposition 1 gives another proof of Theorem A by starting with the sets A1,0 = {n}, A2,0 = {n −
1}, . . . , Am,0 = {n+ 1−m}. These m sets satisfy the conditions of the proposition for k = 0. We can iterate
Proposition 1 k times to create m sets A1,k, A2,k, . . . , Am,k that partition {n, n− 1, . . . , n+ 1−mk+1} into
m sets satisfying (1). For n = mk+1 − 1, the sets created with this recursive construction can be shown to
coincide with those described in Theorem A.

Another important consequence of Proposition 1 is

Theorem 2. Let m ≥ 2 and k ≥ 1 be positive integers. Let n be any integer. There exists a partition of
{n, (n− 1), . . . , n+ 1− 2mk} into m sets with equal sums of t-powers for every t = 0, 1, 2, . . . , k.

We prove Theorem 2 in §1. A similar argument for an equivalent result was found independently by
Choudhry [7].

Theorem 2 has the following two important consequences:

• Sn,k can be partitioned into m sets with equal sum when n = 2mk.

• Whenever Sn,k can be partitioned intom sets with the same sum, then Sn+2mk,k can also be partitioned.

The second of these allows us to classify all n such that Sn,k can be partitioned into m sets of equal sum.
Certainly if Sn,k can be partitioned into m sets of equal sum, then m | 1k+2k+· · ·+nk. Given an integer r ≥ 0
such that r < 2mk and m | 1k + · · ·+ rk, let nr be the smallest positive integer such that nr ≡ r mod 2mk

and Snr,k can be partitioned into m sets of equal sum. Let

Rm = {r ∈ N0 | r < 2mk, m | 1k + 2k + · · ·+ rk}.
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Then the n for which Sn,k can be partitioned into m sets of equal sum are

{nr + 2mk` | r ∈ Rm, ` ∈ N0}.

Following this strategy, we classify all n for which Sn,3 can be partitioned into three sets of equal sum.

Theorem 3. The set {13, 23, . . . , n3} can be partitioned into three sets of equal sum if and only if n = 23
or n ≥ 26 with n ≡ 0, 2 mod 3.

We also include a few other examples of classification.

Theorem 4. For positive integers n, k, let Sn,k = {1k, 2k, . . . , nk}.

1. The set Sn,3 can be partitioned into two sets of equal sum if and only if n ≥ 12 and n ≡ 0, 3 mod 4.

2. The set Sn,2 can be partitioned into two sets of equal sum if and only if n ≥ 7 and n ≡ 0, 3 mod 4.

3. The set Sn,2 can be partitioned into three sets of equal sum if and only if n ≥ 18 and n ≡ 0, 4, 8 mod 9.

In Theorems 3 and 4, the set Sn,k can be partitioned into m sets with equal sum for all large enough
n satisfying the necessary condition m | 1k + 2k + · · · + nk. In our final theorem, we prove this is true in
general (that is, for all m and k).

Theorem 5. Let k ≥ 1,m ≥ 2 be positive integers. There exists a constant Ck,m depending on k and m such
that {1k, 2k, . . . nk} can be partitioned into m sets of equal sum whenever n ≥ Ck,m and m | 1k+2k+ · · ·+nk.

To get an idea of the proof, suppose m = 2. Let T = 1k+2k+···+nk

2 ∈ N. It is enough to find a
subset A ⊆ Sn,k = {1k, 2k, . . . , nk} such that the sum of the elements of A is T , for then taking B to
be the complement of A in Sn,k yields our desired partition. To find A it is natural to try the following:
Let r be the largest non-negative integer such that nk + (n − 1)k + · · · + (n − r)k < T . Try to write
T − (nk + (n − 1)k + · · · + (n − r)k) as a sum of distinct kth powers. If we find such a decomposition,
appending the summands to {nk, . . . , (n− r)k} gives us A. We show that a close relative of this procedure
always succeeds, and explain how to extend the method to m > 2, in §4. The linchpin of our proof of
Theorem 5 is a deep theorem of Wright on Waring’s problem (Proposition 7 below).

Finally, we remark that Boyd [4, 5], Berend and Golan [2], and Buhler, Golan, Pratt, and Wagon [6] have
considered a variant of our classification problem in the spirit of PTE (for m = 2): Given a positive integer
k, for which n can {1, 2, 3, . . . , n} can be partitioned into two sets A1, A2 such that

∑
a∈A1

at =
∑
a∈A2

at

for all t = 0, 1, 2, . . . , k − 1? They answer this question completely for k = 1, 2, . . . , 8.

2 Constructive upper bounds: Proofs of Proposition 1 and Theo-
rem 2

Let’s illustrate the idea behind the proof of Proposition 1 and Theorem 2 by showing how it works for a
particular m and k. Let’s take m = k = 3. We will show that we can partition 54 consecutive integers
into 3 sets where the sum of the cubes of the elements in each set are equal. First, note that given six
consecutive integers n− 5, n− 4, . . . , n, then A = {n, n− 5}, B = {n− 1, n− 4}, C = {n− 2, n− 3} satisfy
that the sum of the terms in each set is 2n− 5 for all three sets. If we now consider the sum of the squares
of each set and view as a polynomial in n, then we get 2n2 − 10n + 25, 2n2 − 10n + 17, 2n2 − 10n + 13,
respectively. Therefore, they only differ in the constant term. We can now consider n− 6, n− 7, . . . , n− 11
and distribute by rotation, i.e., n − 6, n − 11 go to B, n − 7, n − 10 go to C, and n − 8, n − 9 go to A. We
then rotate n − 12, . . . , n − 17 once more. At the end we get A = {n, n − 5, n − 8, n − 9, n − 13, n − 16},
B = {n− 1, n− 4, n− 6, n− 11, n− 14, n− 15}, and C = {n− 2, n− 3, n− 7, n− 10, n− 12, n− 17}. Note
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that we get∑
a∈A

a2 = 2n2 − 10n+ 25 + 2(n− 6)2 − 10(n− 6) + 13 + 2(n− 12)2 − 10(n− 12) + 17∑
b∈B

b2 = 2n2 − 10n+ 17 + 2(n− 6)2 − 10(n− 6) + 25 + 2(n− 12)2 − 10(n− 12) + 13∑
c∈C

c2 = 2n2 − 10n+ 13 + 2(n− 6)2 − 10(n− 6) + 17 + 2(n− 12)2 − 10(n− 12) + 25.

By rotating three times we forced the constant terms to be equal. Therefore these 18 consecutive numbers
could be split into three sets of 6 each, such that the sum of the squares of the elements of each set are all
equal. Now, by construction, if we consider the sum of cubes as a polynomial in n, the result will be a cubic
in n where the coefficients of n3, n2, n match, with the constant term the only different coefficient. We can
then use the same trick of rotating three times to get a construction of 54 consecutive integers such that the
sum of the cubes are equal. The sets are

A = {n− i | i ∈ {0, 5, 8, 9, 13, 16, 20, 21, 25, 28, 30, 35, 37, 40, 42, 47, 50, 51}}
B = {n− i | i ∈ {1, 4, 6, 11, 14, 15, 18, 23, 26, 27, 31, 34, 38, 39, 43, 46, 48, 53}}
C = {n− i | i ∈ {2, 3, 7, 10, 12, 17, 19, 22, 24, 29, 32, 33, 36, 41, 44, 45, 49, 52}}.

Proof of Proposition 1. For i ∈ {1, 2, . . . ,m} consider∑
n−a∈Ai,k

(n− a)k+1

as a polynomial in n of degree k + 1, i.e.,∑
n−a∈Ai,k

(n− a)k+1 = ci,k+1n
k+1 + ci,kn

k + · · ·+ ci,1n+ ci,0.

Note that for any ` ∈ {0, 1, 2, . . . , k + 1}

ci,` = (−1)k+1−`
(
k + 1

`

) ∑
n−a∈Ai,k

ak+1−` = (−1)k+1−`
(
k + 1

`

) ∑
a∈Ai,k

(n− a)k+1−`

= (−1)k+1−`
(
k + 1

`

) ∑
a∈Ai,k

k+1−`∑
h=0

(
k + 1− `

h

)
nk+1−`−h(−1)hah

= (−1)k+1−`
(
k + 1

`

) k+1−`∑
h=0

(
k + 1− `

h

)
nk+1−`−h(−1)h

∑
a∈Ai,k

ah.

Now for any j ∈ {1, 2, . . . ,m} and any h < k + 1, the inner sum can be replaced:∑
a∈Ai,k

ah =
∑

a∈Aj,k

ah.

When ` > 0, we have h < k + 1. Therefore

ci,` = (−1)k+1−`
(
k + 1

`

) k+1−`∑
h=0

(
k + 1− `

h

)
nk+1−`−h(−1)h

∑
a∈Aj,k

ah = cj,`.

Therefore ci,` = cj,` for any ` > 0. We can now relabel ci,` as c` for ` > 0 and di for ` = 0. In other words,∑
n−a∈Ai,k

(n− a)k+1 = ck+1n
k+1 + ckn

k + · · ·+ c1n+ di. (2)
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For 0 ≤ q ≤ m− 1 define the sets A
(q)
i,k as

A
(q)
i,k = {a− qN | a ∈ Ai,k}.

Now we will define Ai,k+1 in terms of these:

Ai,k+1 = Ai,k ∪A(1)
i−1,k ∪ · · · ∪A

(i−1)
1,k ∪A(i)

m,k ∪ · · · ∪A
(m−1)
i+1,k .

From (2), for any j ∈ {1, 2, . . . ,m}, we get

∑
n−a∈Ai,k+1

(n− a)k+1 =

k+1∑
`=1

c`

m−1∑
q=0

(n− qN)` +

m∑
r=1

dr

=
∑

n−a∈Aj,k+1

(n− a)k+1.

For t ∈ {0, 1, . . . k} and q ∈ {0, 1, . . . ,m− 1}, we have

∑
a∈Ai,k

(a− qN)t =
∑

a∈Ai,k

t∑
`=0

(
t

`

)
a`(−qN)t−` =

t∑
`=0

(
t

`

)
(−qN)t−`

∑
a∈Ai,k

a`

=

t∑
`=0

(
t

`

)
(−qN)t−`

∑
a∈Aj,k

a` =
∑

a∈Aj,k

(a− qN)t.

Therefore ∑
a∈Ai,k+1

at =
∑

a∈Ai,k

at +
∑

a∈Ai−1,k

(a−N)t + · · ·+
∑

a∈Ai+1,k

(a− (m− 1)N)t

=
∑

a∈Aj,k

at +
∑

a∈Aj−1,k

(a−N)t + · · ·+
∑

a∈Aj+1,k

(a− (m− 1)N)t =
∑

a∈Aj,k+1

at.

Note that the size of Ai,k+1 is m times the size of Ai,k, which is what we wanted to prove.

Proof of Theorem 2. Consider the partition A1 = {n, n + 1 − 2m}, A2 = {n − 1, n + 2 − 2m}, A3 = {n −
2, n+ 3− 2m}, . . . , Am = {n− (m− 1), n−m}. Then for k = 1, we have N = 2m. By applying Proposition
1 k − 1 times, we get a partition of {n, (n − 1), . . . , (n − 2mk)} into m sets, where the t-th powers of the
elements of each set have the same sum for 0 ≤ t ≤ k.

3 Solving the classification problem for some m, k ∈ {2, 3}: Proofs
of Theorems 3 and 4

To showcase the usefulness of Theorem 2, we will classify all n partitioning Sn,k into m sets of equal sum
for some values of m, k. Since the original puzzle that inspired this work was the case k = 3,m = 3, we will
first prove Theorem 3, which classifies all n such that {13, 23, . . . , n3} can be partitioned into three sets of
equal sum.

Proof of Theorem 3. We know

13 + 23 + · · ·+ n3 =

(
n(n+ 1)

2

)2

. (3)

Hence, for Sn,3 to be partitioned into three sets, we need n ≡ 0, 2 mod 3. From sequence A330212 in OEIS
[1] we know that the smallest n for which there is such a partition is n = 23. To search for solutions for
n = 24, we searched among all subsets S ⊆ {1, 2, . . . , 24} whether∑

i∈S
i3 =

n2(n+ 1)2

12
= 30000.
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There are 163 subsets with such a property, but no two of them are disjoint. Therefore, there are no solutions
for n = 24. Tables 1, 2 show there are partitions for 26 ≤ n ≤ 75 with n ≡ 0, 2 mod 3, and there is a partition
for n = 78. Since all residues modulo 54 that are 0 or 2 modulo 3 are covered, by applying Proposition 1,
we get that any n > 78 with n ≡ 0, 2 mod 3 has a partition.

n Partition
23 {3, 6, 10, 13, 18, 19, 21}, {1, 4, 7, 8, 12, 16, 20, 22}, {2, 5, 9, 11, 14, 15, 17, 23}
26 {4, 14, 19, 24, 26}, {2, 3, 5, 11, 15, 16, 18, 22, 25}, {1, 6, 7, 8, 9, 10, 12, 13, 17, 20, 21, 23}
27 {11, 12, 21, 25, 27}, {7, 13, 14, 15, 17, 18, 22, 26}, {1, 2, 3, 4, 5, 6, 8, 9, 10, 16, 19, 20, 23, 24}
29 {7, 12, 14, 19, 24, 25, 28}, {2, 6, 8, 17, 20, 23, 26, 27}, {1, 3, 4, 5, 9, 10, 11, 13, 15, 16, 18, 21, 22, 29}
30 {4, 7, 8, 16, 19, 25, 26, 30}, {3, 5, 11, 14, 17, 20, 21, 23, 24, 27}, {1, 2, 6, 9, 10, 12, 13, 15, 18, 22, 28, 29}
32 {16, 22, 25, 31, 32}, {2, 4, 5, 8, 11, 12, 17, 18, 19, 20, 23, 29, 30},

{1, 3, 6, 7, 9, 10, 13, 14, 15, 21, 24, 26, 27, 28}
33 {4, 13, 16, 21, 24, 26, 28, 33}, {1, 3, 6, 7, 10, 18, 20, 25, 27, 29, 31},

{2, 5, 8, 9, 11, 12, 14, 15, 17, 19, 22, 23, 30, 32}
35 {7, 17, 24, 25, 28, 32, 35}, {11, 18, 19, 20, 22, 29, 33, 34},

{1, 2, 3, 4, 5, 6, 8, 9, 10, 12, 13, 14, 15, 16, 21, 23, 26, 27, 30, 31}
36 {5, 7, 10, 14, 22, 29, 31, 33, 35}, {1, 6, 12, 15, 16, 17, 18, 20, 24, 26, 27, 28, 36},

{2, 3, 4, 8, 9, 11, 13, 19, 21, 23, 25, 30, 32, 34}
38 {5, 17, 21, 24, 29, 32, 35, 38}, {1, 6, 9, 10, 12, 13, 14, 15, 20, 31, 33, 36, 37},

{2, 3, 4, 7, 8, 11, 16, 18, 19, 22, 23, 25, 26, 27, 28, 30, 34}
39 {6, 22, 25, 27, 36, 37, 39}, {2, 3, 4, 5, 8, 11, 12, 13, 16, 23, 26, 29, 30, 32, 33, 35},

{1, 7, 9, 10, 14, 15, 17, 18, 19, 20, 21, 24, 28, 31, 34, 38}
41 {2, 5, 18, 26, 27, 32, 35, 39, 41}, {10, 13, 20, 23, 24, 28, 31, 34, 38, 40},

{1, 3, 4, 6, 7, 8, 9, 11, 12, 14, 15, 16, 17, 19, 21, 22, 25, 29, 30, 33, 36, 37}
42 {2, 8, 9, 20, 24, 26, 35, 38, 39, 42}, {3, 4, 6, 7, 11, 12, 14, 15, 19, 21, 25, 36, 37, 40, 41},

{1, 5, 10, 13, 16, 17, 18, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34}
44 {1, 2, 9, 20, 28, 31, 36, 38, 43, 44}, {4, 5, 8, 10, 11, 13, 15, 22, 25, 26, 27, 29, 32, 39, 40, 42},

{3, 6, 7, 12, 14, 16, 17, 18, 19, 21, 23, 24, 30, 33, 34, 35, 37, 41}
45 {5, 10, 11, 19, 24, 27, 28, 29, 32, 34, 36, 40, 44}, {4, 9, 14, 15, 22, 23, 26, 30, 31, 37, 39, 41, 42},

{1, 2, 3, 6, 7, 8, 12, 13, 16, 17, 18, 20, 21, 25, 33, 35, 38, 43, 45}
47 {16, 24, 25, 28, 34, 38, 43, 45, 47}, {5, 7, 10, 20, 21, 31, 35, 36, 37, 40, 42, 46},

{1, 2, 3, 4, 6, 8, 9, 11, 12, 13, 14, 15, 17, 18, 19, 22, 23, 26, 27, 29, 30, 32, 33, 39, 41, 44}
48 {8, 10, 12, 19, 22, 24, 25, 27, 32, 36, 37, 39, 45, 48}, {2, 3, 5, 6, 9, 11, 18, 20, 23, 29, 40, 41, 42, 46, 47},

{1, 4, 7, 13, 14, 15, 16, 17, 21, 26, 28, 30, 31, 33, 34, 35, 38, 43, 44}
50 {6, 12, 16, 28, 33, 36, 41, 42, 43, 45, 49}, {1, 2, 9, 18, 19, 20, 22, 25, 27, 29, 30, 31, 34, 35, 37, 39, 46, 47},

{3, 4, 5, 7, 8, 10, 11, 13, 14, 15, 17, 21, 23, 24, 26, 32, 38, 40, 44, 48, 50}
51 {2, 8, 11, 15, 20, 26, 32, 37, 42, 44, 45, 47, 49}, {3, 14, 16, 22, 25, 28, 30, 31, 34, 35, 38, 43, 50, 51},

{1, 4, 5, 6, 7, 9, 10, 12, 13, 17, 18, 19, 21, 23, 24, 27, 29, 33, 36, 39, 40, 41, 46, 48}
53 {4, 6, 13, 17, 18, 21, 30, 32, 46, 47, 49, 51, 53}, {3, 8, 24, 25, 27, 31, 36, 38, 42, 44, 45, 48, 52},

{1, 2, 5, 7, 9, 10, 11, 12, 14, 15, 16, 19, 20, 22, 23, 26, 28, 29, 33, 34, 35, 37, 39, 40, 41, 43, 50}
54 {17, 22, 38, 39, 47, 48, 49, 51, 52}, {4, 5, 18, 24, 26, 33, 36, 40, 42, 43, 45, 53, 54},

{1, 2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 19, 20, 21, 23, 25, 27, 28, 29, 30, 31, 32, 34, 35, 37, 41, 44, 46, 50}

Table 1: Partitions of {1, 2, . . . , n} into three sets whose cubes have equal sum.

Remark 6. Finding a partition of Sn,3 into three sets of equal sum is not trivial in a computer, as there are

an enormous amount of partitions to consider. Indeed, there are
{
n
3

}
= 3n−1−2n+1

2 partitions to consider.
Because of this, our strategy was not to try all partitions in some order, but to pick a random subset of
S = {13, 23, . . . , n3} and check if the sum of the elements of the subset is N = (13+23+ · · ·+n3)/3. The way
we chose the random subset was as follows: we chose i3 ∈ S and subtracted it from N , we then continued
to choose distinct cubes, until the difference between N and the sum of these cubes was smaller than the
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n Partition
{1, 4, 14, 15, 28, 34, 36, 37, 39, 42, 49, 50, 51, 56},

56 {3, 5, 8, 11, 16, 23, 26, 27, 30, 31, 32, 38, 43, 44, 45, 47, 52, 53},
{2, 6, 7, 9, 10, 12, 13, 17, 18, 19, 20, 21, 22, 24, 25, 29, 33, 35, 40, 41, 46, 48, 54, 55}
{7, 31, 40, 52, 53, 55, 56, 57},

57 {2, 3, 12, 13, 17, 18, 20, 22, 23, 25, 26, 27, 29, 32, 36, 38, 39, 41, 42, 43, 47, 48, 54},
{1, 4, 5, 6, 8, 9, 10, 11, 14, 15, 16, 19, 21, 24, 28, 30, 33, 34, 35, 37, 44, 45, 46, 49, 50, 51}
{1, 2, 6, 9, 10, 18, 23, 27, 37, 38, 43, 46, 55, 56, 57, 58},

59 {3, 4, 5, 11, 13, 15, 17, 20, 30, 33, 34, 35, 36, 44, 48, 50, 53, 54, 59},
{7, 8, 12, 14, 16, 19, 21, 22, 24, 25, 26, 28, 29, 31, 32, 39, 40, 41, 42, 45, 47, 49, 51, 52}
{14, 16, 23, 26, 30, 31, 32, 35, 38, 40, 42, 43, 44, 47, 50, 56, 57},

60 {1, 2, 3, 5, 7, 11, 13, 15, 19, 21, 29, 33, 36, 37, 45, 49, 53, 55, 58, 60},
{4, 6, 8, 9, 10, 12, 17, 18, 20, 22, 24, 25, 27, 28, 34, 39, 41, 46, 48, 51, 52, 54, 59}
{2, 4, 7, 9, 11, 21, 30, 31, 48, 50, 51, 57, 58, 60, 62},

62 {1, 3, 8, 10, 15, 18, 19, 22, 29, 33, 39, 42, 47, 49, 52, 53, 54, 56, 59},
{5, 6, 12, 13, 14, 16, 17, 20, 23, 24, 25, 26, 27, 28, 32, 34, 35, 36, 37, 38, 40, 41, 43, 44, 45, 46, 55, 61}
{1, 4, 5, 8, 15, 23, 24, 29, 35, 42, 46, 51, 53, 55, 58, 60, 61},

63 {7, 10, 11, 12, 14, 17, 18, 21, 28, 33, 34, 37, 38, 39, 40, 44, 47, 48, 49, 52, 59, 62},
{2, 3, 6, 9, 13, 16, 19, 20, 22, 25, 26, 27, 30, 31, 32, 36, 41, 43, 45, 50, 54, 56, 57, 63}
{1, 7, 8, 18, 22, 25, 27, 32, 38, 40, 48, 50, 52, 55, 63, 64, 65},

65 {2, 4, 6, 11, 14, 15, 16, 19, 21, 28, 30, 34, 37, 39, 41, 43, 49, 56, 58, 59, 61, 62},
{3, 5, 9, 10, 12, 13, 17, 20, 23, 24, 26, 29, 31, 33, 35, 36, 42, 44, 45, 46, 47, 51, 53, 54, 57, 60}
{3, 7, 9, 13, 17, 18, 23, 31, 34, 41, 46, 49, 53, 55, 58, 61, 62, 65},

66 {2, 4, 6, 8, 14, 20, 24, 29, 32, 36, 37, 38, 40, 47, 48, 54, 59, 60, 63, 66},
{1, 5, 10, 11, 12, 15, 16, 19, 21, 22, 25, 26, 27, 28, 30, 33, 35, 39, 42, 43, 44, 45, 50, 51, 52, 56, 57, 64}
{1, 2, 6, 7, 13, 33, 36, 37, 41, 48, 54, 55, 57, 58, 62, 64, 68},

68 {3, 5, 11, 16, 17, 20, 22, 23, 25, 26, 27, 32, 38, 42, 47, 49, 50, 51, 52, 59, 60, 63, 66},
{4, 8, 9, 10, 12, 14, 15, 18, 19, 21, 24, 28, 29, 30, 31, 34, 35, 39, 40, 43, 44, 45, 46, 53, 56, 61, 65, 67}
{1, 6, 7, 28, 33, 38, 39, 40, 55, 57, 60, 63, 65, 67, 68},

69 {3, 4, 9, 14, 15, 20, 21, 22, 24, 25, 30, 31, 32, 35, 45, 49, 58, 61, 62, 64, 66, 69},
{2, 5, 8, 10, 11, 12, 13, 16, 17, 18, 19, 23, 26, 27, 29, 34, 36, 37, 41, 42, 43, 44, 46,
47, 48, 50, 51, 52, 53, 54, 56, 59}
{2, 8, 14, 18, 20, 22, 31, 35, 37, 39, 43, 46, 47, 51, 53, 55, 57, 61, 62, 66, 67},

71 {4, 5, 9, 10, 11, 13, 17, 24, 26, 28, 30, 33, 38, 41, 44, 49, 52, 56, 58, 63, 64, 70, 71},
{1, 3, 6, 7, 12, 15, 16, 19, 21, 23, 25, 27, 29, 32, 34, 36, 40, 42, 45, 48, 50, 54, 59, 60, 65, 68, 69}
{1, 2, 3, 5, 10, 17, 25, 26, 34, 38, 46, 49, 52, 54, 55, 56, 59, 61, 62, 68, 69},

72 {4, 7, 12, 14, 15, 20, 23, 24, 28, 29, 33, 40, 41, 48, 50, 51, 53, 57, 58, 60, 66, 67, 70},
{6, 8, 9, 11, 13, 16, 18, 19, 21, 22, 27, 30, 31, 32, 35, 36, 37, 39, 42, 43, 44, 45, 47, 63, 64, 65, 71, 72}
{1, 2, 4, 8, 9, 18, 21, 22, 27, 29, 46, 47, 50, 52, 56, 57, 64, 67, 70, 72, 73},

74 {5, 6, 10, 11, 12, 13, 14, 17, 32, 33, 34, 43, 44, 48, 49, 51, 53, 62, 63, 65, 66, 68, 74},
{3, 7, 15, 16, 19, 20, 23, 24, 25, 26, 28, 30, 31, 35, 36, 37, 38, 39, 40, 41, 42, 45, 54, 55, 58, 59, 60, 61, 69, 71}
{1, 2, 3, 6, 7, 12, 13, 17, 25, 26, 40, 43, 48, 57, 59, 60, 64, 71, 72, 73, 75},

75 {4, 9, 19, 20, 23, 24, 28, 34, 37, 38, 46, 47, 49, 50, 51, 54, 55, 56, 61, 63, 65, 69, 70},
{5, 8, 10, 11, 14, 15, 16, 18, 21, 22, 27, 29, 30, 31, 32, 33, 35, 36, 39, 41, 42, 44, 45, 52, 53, 58, 62, 66, 67, 68, 74}
{1, 6, 11, 12, 20, 31, 40, 42, 43, 45, 46, 54, 62, 67, 69, 72, 74, 76, 78},

78 {2, 3, 4, 5, 7, 9, 22, 33, 37, 38, 48, 49, 51, 52, 55, 59, 63, 64, 71, 73, 75, 77},
{8, 10, 13, 14, 15, 16, 17, 18, 19, 21, 23, 24, 25, 26, 27, 28, 29, 30, 32, 34, 35, 36, 39, 41, 44, 47,
50, 53, 56, 57, 58, 60, 61, 65, 66, 68, 70}

Table 2: Partitions of {1, 2, . . . , n} into three sets whose cubes have equal sum.
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smallest cube left in S. We repeated this process multiple times until we found two disjoint subsets whose
cubes added to N . Finding the partitions for all 36 cases with this strategy took a few hours. Stan Wagon
has informed us that the techniques from [6] can be adapted to speed up these calculations.

Proof of Theorem 4. 1. From (3) we see that for Sn,3 to be partitioned into two sets of equal sum we need

2 |
(
n(n+1)

2

)2
, therefore n ≡ 0, 3 mod 4. The smallest n for which Sn,3 can be partitioned in two sets of

equal sum is 12 (see sequence A330212 in OEIS [1]). From Corollary 2 we know that we can partition
2(2)3 = 16 consecutive cubes into two sets of equal sums. Therefore, all positive n ≡ 12 mod 16 work,
as do all positive n ≡ 0 mod 16. In Table 3 we show for 12 ≤ n ≤ 27 with n ≡ 0, 3 mod 4 that there is
a partition of Sn,3 into two sets of equal sum. Therefore, for every n ≥ 12 with n ≡ 0, 3 mod 4 we can
partition Sn,3 into two sets of equal sum.

n Partition
12 {1, 2, 4, 8, 9, 12}, {3, 5, 6, 7, 10, 11}
15 {1, 2, 4, 7, 8, 11, 13, 14}, {3, 5, 6, 9, 10, 12, 15}
16 {1, 4, 6, 7, 10, 11, 13, 16}, {2, 3, 5, 8, 9, 12, 14, 15}
19 {1, 2, 5, 6, 8, 9, 11, 14, 15, 16, 17}, {3, 4, 7, 10, 12, 13, 18, 19}
20 {1, 2, 3, 4, 5, 6, 7, 9, 11, 13, 16, 17, 20}, {8, 10, 12, 14, 15, 18, 19}
23 {1, 2, 3, 4, 5, 6, 7, 8, 9, 12, 14, 15, 16, 19, 20, 21}, {10, 11, 13, 17, 18, 22, 23}
24 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 16, 21, 22, 23}, {13, 15, 17, 18, 19, 20, 24}
27 {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 21, 25, 26, 27}, {12, 15, 16, 17, 18, 19, 20, 22, 23, 24}

Table 3: Partitions of {1, 2, . . . , n} into two sets whose cubes have equal sum.

2. For Sn,2 to be partitioned into two sets, we need 2 | 12 + 22 + · · ·n2 = n(n+ 1)(2n+ 1)/6. Therefore,
we need n ≡ 0, 3 mod 4. From Proposition 1, we know we can partition any 8 consecutive integers into
two sets where the sum of their squares are equal. Therefore, we need only check n ≡ 0, 3, 4, 7 mod 8.
Table 4 shows partitions for n = 7, 8, 10, 12. One can also check that it is not possible for n = 3, 4.

n Partition
7 {1, 2, 4, 7}, {3, 5, 6}
8 {1, 4, 6, 7}, {2, 3, 5, 8}
10 {1, 3, 4, 5, 9, 11}, {2, 6, 7, 8, 10}
12 {1, 2, 3, 4, 5, 6, 7, 8, 11}, {9, 10, 12}

Table 4: Partitions of {1, 2, . . . , n} into two sets whose squares have equal sum.

3. From sequence A330431 in [1], we know 13 is the least n with such a property. Since 3 | n(n+ 1)(2n+
1)/6, we need n ≡ 0, 4, 8 mod 9. From Proposition 1, we know that any list of 18 consecutive integers
can be partitioned into three sets such that the sum of squares in each set is the same. Therefore,
we need only check n ≡ 0, 4, 8, 9, 13, 17 mod 18. In Table 5, we show that if 13 ≤ n < 31 and
n ≡ 0, 4, 8, 9, 13, 17 mod 18, then there is a partition. The proof follows.

4 The classification problem for large enough n: Proof of Theorem
5

The proof uses work of Wright on Waring’s problem with “proportionality conditions”.
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n Partition
13 {2, 10, 13}, {4, 7, 8, 12}, {1, 3, 5, 6, 9, 11}
17 {1, 2, 13, 14, 15}, {6, 7, 8, 9, 10, 11, 12}, {3, 4, 5, 16, 17}
18 {1, 6, 8, 11, 15, 16}, {2, 5, 9, 10, 13, 18}, {3, 4, 7, 12, 14, 17}
22 {1, 2, 3, 7, 19, 20, 21}, {4, 8, 11, 16, 18, 22}, {5, 6, 9, 10, 12, 13, 14, 15, 17}
26 {1, 4, 19, 22, 23, 26}, {5, 20, 21, 24, 25}, {2, 3, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18}
27 {1, 3, 5, 21, 23, 24, 27}, {2, 11, 20, 22, 25, 26}, {4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, 17, 18, 19}

Table 5: Partitions of {1, 2, . . . , n} into three sets whose squares have equal sum.

Proposition 7. For each fixed positive integer k there is an s0 = s0(k) for which the following holds. Fix
a positive integer s ≥ s0, and fix positive real numbers λ1, . . . , λs with λ1 + · · ·+ λs = 1. If n is sufficiently
large, there are positive integers m1, . . . ,ms with

mk
1 + · · ·+mk

s = n.

Furthermore, one can choose m1, . . . ,ms such that each mk
i = (λi + o(1))n, as n→∞.

Proposition 7 is proved for k ≥ 3 in [17] (see that paper’s Theorem 1). For k = 2, stronger results are proved
in [16]. Proposition 7 is trivial when k = 1 (in that case one can take s0 = 1 and each mi = λin+Os(1)).

Corollary 8. For each fixed positive integer k there is an s0 = s0(k) for which the following holds. Fix a
positive integer s ≥ s0. For all large enough n, there are distinct positive integers m1, . . . ,ms with mk

1 +
· · ·+mk

s = n and each mk
i ∈ ( n2s ,

3n
2s ).

Proof. This follows immediately from Proposition 7, choosing λ1, . . . , λs as s distinct real numbers that sum
to 1 from the interval ( 1

2s ,
3
2s ).

The next lemma is a consequence of the the “integral test” in calculus. Below we write f(n) ∼ g(n) to
mean that f(n)/g(n)→ 1 as n→∞.

Lemma 9. Fix a positive integer k, and fix real numbers α, β with 0 < α < β. As n→∞,∑
αn<a<βn

ak ∼ (βk+1 − αk+1)

k + 1
nk+1.

In particular, 1k + 2k + · · ·+ nk ∼ nk+1

k+1 .

Proof (sketch). The sum is (essentially) a Riemann sum for the integral
∫ βn
αn

tk dt = (βk+1−αk+1)
k+1 nk+1. Draw-

ing the graph, we see that the difference between the sum and the integral is bounded by a constant multiple
of nk; the result follows.

Proof of Theorem 5. Put T = 1
m (1k+2k+· · ·+nk). For all large n, we construct disjoint sets A1, . . . , Am−1 ⊆

{1, 2, . . . , n} with
∑
a∈Ai

ak = T for each i = 1, . . . ,m− 1. Setting Am = {1, 2, . . . , n} \ (A1 ∪ · · · ∪ Am−1),
we then have that A1, . . . , Am form a partition {1, 2, . . . , n} into m sets with equal sums of kth powers.

Let s0(k) be as in Corollary 8. We fix s1 ≥ s0(k) satisfying(
3

2s1

)1/k

<
1

2

(
1

m

) 1
k+1

and fix positive integers s2, . . . , sk−1 with

si+1 > 3si for 0 < i < k − 1.

In what follows, n is always assumed sufficiently large. All asymptotic notation refers to behavior as
n→∞.
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To construct A1, let r1 be the largest nonnegative integer with nk + · · ·+ (n− r1)k ≤ T . From Lemma 9,

n− r1 ∼ c1n, where c1 = (1− 1/m)
1

k+1 .

Put
T1 = T − (nk + (n− 1)k + · · ·+ (n− (r1 − 1))k).

Then
(n− r1)k ≤ T1 < (n− r1)k + (n− (r1 + 1))k < 2(n− r1)k.

By Corollary 8, we can write T1 = ak1,1 + · · ·+ ak1,s1 , where the a1,j are distinct and

1

2s1
(n− r1)k < ak1,j <

3

2s1
(n− r1)k. (4)

In particular, since 1− 1
m ≥

1
m , each

a1,j <

(
3

2s1

)1/k

(n− r1) <
1

2

(
1

m

) 1
k+1

(n− r1) <
1

2
c1n < n− r1; (5)

in particular, each a1,j is smaller than each of n− 1, . . . , n− (r1 − 1). We take A1 = {n, n− 1, . . . , n− (r1 −
1)} ∪ {a1,1, . . . , a1,s1}.

If m = 2, we are done. Otherwise, we proceed to construct A2 as follows. Choose the largest positive
integer r2 with (n− r1)k + · · ·+ (n− r2)k ≤ T . Then n− r2 ∼ c2n, for c2 = (1− 2/m)1/(k+1). Put

T2 = T − ((n− r1)k + · · ·+ (n− (r2 − 1))k).

Arguing as above, we see we can represent T2 = ak2,1 + · · ·+ ak2,s2 , where the a2,j are distinct and

1

2s2
(n− r2)k < ak2,j <

3

2s2
(n− r2)k.

Since s2 > 3s1,
3

2s2
(n− r2)k <

3

6s1
(n− r2)k =

1

2s1
(n− r2)k <

1

2s1
(n− r1)k.

Comparing with (4), we see each a2,j is smaller than each a1,j′ . Furthermore, since s2 > s1 and 1− 2
m ≥

1
m ,

a calculation analogous to (5) shows that each

a2,j < n− r2.

We take A2 = {n− r1, n− (r1 + 1), . . . , n− (r2 − 1)} ∪ {a2,1, . . . , a2,s2}.
If m > 3, we continue in the obvious way to construct A3, . . . , Am−1.
It remains to argue that A1, . . . , Am−1 are disjoint. Each Ai consists of terms n− ti (for ti in a certain

interval) together with terms ai,j . The ti come from disjoint intervals, as i varies. Moreover, when i < i′, our
construction guarantees that each ai′,j is smaller than each ai,j′ . So it is enough to argue that no n − ti is
equal to any ai′,j . Each n− ti ≥ n− rm−1, and n− rm−1 ∼ cm−1n, where cm−1 = (1− (m− 1)/m)1/(k+1) =
(1/m)1/(k+1). On the other hand, each

ai′,j <

(
3

2si′

)1/k

(n− ri′) <
(

3

2s1

)1/k

(n− ri′) <
1

2

(
1

m

)1/(k+1)

n < n− rm−1.

Hence, n− ti is strictly larger than ai′,j .
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