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Mathematical Olympiads

• Annual Mathematics competition for High School Students

• First IMO held in Bucharest, Romania in 1959 (insert cheer

from Iuli).

• Only Elementary Tools needed for solution of problems.
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Objectives

• To provide opportunities for meetings and contacts among

present and future mathematicians and scientists of different

countries.

• To stimulate and encourage mathematical excellence among

the students and teachers

• To enrich the education and training for research in the

mathematical sciences

• To foster unity of interest among all nations. Mathematics,

because of its universal nature, is ideally suited for this role.
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Test

• Test separated in two days.

• Each day has 3 problems. Students have 4 1
2 hours to solve

the test.
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Topics covered

• Number Theory

• Algebra

• Combinatorics

• Geometry
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Topics Not Covered

• Calculus

• Complex Numbers*

• Inversion in geometry
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Difficult Problems

The IMO has 6 very difficult questions. Usually the order of

dificulty is 1, 4, 2, 5, 3, 6. Where 1,2,3 are problems on the

first day and 4,5,6 on the second.
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Who Competes?

• 5 Countries started.

• In 1981 it reached the 5 continents.

• IMO Mexico 2005 had 91 countries.

• Since 1983 each country is represented by 6 students under

20 years of age and that haven’t started university studies.
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Prizes

• Half the contestants get a medal.

• Gold Medal for the best 1
12

• Silver Medal for the next 1
6

• Bronze Medal for the next 1
4
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More Prizes

• There are also awarded honorary mentions for contestants

that solve one problem, yet don’t get a medal.

• On some occasions a solution is worthy of being awarded

‘Creative Solution’
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Example of Creative Solution

Problem 3 of IMO Mexico 2005 (July 13, 2005):

Let x, y, z ∈ R0 and xyz ≥ 1. Prove that

x5 − x2

x5 + y2 + z2
+

y5 − y2

x2 + y5 + z2
+

z5 − z2

x2 + y2 + z5
≥ 0
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Solution

Proof.

x5 − x2

x5 + y2 + z2
−

x5 − x2

x3(x2 + y2 + z2)
=

(x3 − 1)2x2(y2 + z2)

x3(x2 + y2 + z2)(x5 + y2 + z2)
≥ 0

Therefore∑ x5 − x2

x5 + y2 + z2
≥

∑ x5 − x2

x3(x2 + y2 + z2)
=

1

x2 + y2 + z2

∑
(x2 −

1

x
) ≥

≥
1

x2 + y2 + z2

∑
(x2 − yz) ≥ 0
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IMO Impact on Mathematics

• Timothy Gowers, Gold Medal, UK; IMO USA 1981. Fields

Medal in 1998.

• Alexander Razborov, Gold Medal, USSR; IMO UK 1979.

Nevanlinna Prize in 1990.

• Richard Borcherds, Silver Medal, UK; IMO Yugoslavia 1977.

Fields Medal 1998.

• Peter Shor, Silver Medal, USA; IMO Yugoslavia 1977. Nevanlinna

Prize 1998.
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More

• Jean-Christof Yoccoz, Gold Medal, France; IMO E.Germany

1974. Fields Medal 1994.

• Vladimir Drinfel’d, Gold Medal, USSR; IMO Romania, 1969.

Fields Medal 1990.

• Grigorig Margulis, Silver Medal USSR; IMO Czechoslovakia

1962. Fields Medal 1983.
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Procedures

• Short-List of Problems

• Selection of Test

• Test

• Grading

• Coordinating

• Medal Cutoffs
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Mexican Mathematical Olympiad (OMM)

• Started in 1987.

• Selects representatives for Mexico in the IMO.
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Sample Problem from an OMM

Problem 6 of XV Mexican Mathematical Olympiad, November

2001.

A collector of rare coins has coins of denominations 1,2, . . . , n

(several coins for each denomination). He wishes to put the

coins into 5 boxes so that:

(1) in each box there is at most one coin of each denomination;

(2) each box has the same number of coins and the same

denomination total;

(3) any two boxes contain all the denominations;

(4) no denomination is in all 5 boxes.

For which n is this possible?
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Road to the IMO in Mexico

• Be top 16 in the Mexican Mathematical Olympiad (OMM)

held in November.

• Every month from December to May there is a week of

lectures with selection exams.

• 5 selection tests in May

• Make the team and 2 more weeks of training.
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Chihuahua Mathematical Olympiad

• Started in 1989.

• Top 3 State in the nation in the history of the olympiad.

• Selects 6 students for the Mexican Mathematical Olympiad.
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Road to the OMM from Chihuahua

• Be top 20 in the State.

• Be top 6 in 5 selection tests

• 1 week intensive training prior to the OMM
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Evolution

The organization has evolved with time having much

better prepared lecturers and different ways of selecting the

representatives of the state.
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Why do people care about this?

The quest for a solution is always fun, and there are few

things more rewarding than a solution of a nice problem. The

Olympiad has a very noble cause and it attracts many of us

how want to learn.

I train young students now, because I want them to experience

the joy of solving a problem and because I know that my

lectures and the event can help them have new perspectives on

mathematics and on life.
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My Problem

I invented this problem for the Chihuahua Mathematical

Olympiad in 2003:

Let A be a 21-sided regular polygon. How many isosceles

triangles are formed by taking 3 vertices from A.
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Experience on IMO Mexico 2005

Hear me talk.

24



Impact on my Life

• Discovery of the magic of mathematics.

• Getting to know interesting people around the nation.

• Opened some doors to enter selective programs (like this

REU).

• Got me motivated into learning more and to try to pass this

feeling towards more youngsters.
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Favorite Problem

Problem 6 from an argentinian selection test to pick members

for the ‘ XI Olimpiada Matematica del Cono Sur 2000’

Let P : N ⇒ N be a function such that P (1) = 1, P (2) = 2 and

P (n) = P (n− 1) + P (bn
2c).

Prove there exists N > 2000 such that 7|P (N)
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Solution

Let m be such that P (m) ≡ 0 mod (7). m exists because

P (5) = 7. Let P (2m− 1) ≡ x mod (7).

P (2m) = P (2m− 1) + P (m) ≡ x + 0 ≡ x mod (7)

P (2m + 1) = P (2m) + P (m) ≡ x + 0 ≡ x mod (7)

Let P (4m− 3) ≡ y mod (7)

P (4m− 2) = P (4m− 3) + P (2m− 1) ≡ y + x mod (7)

P (4m− 1) = P (4m− 2) + P (2m− 1) ≡ y + 2x mod (7)

P (4m) = P (4m− 1) + P (2m) ≡ y + 3x mod (7)

...

P (4m + 3) = P (4m + 2) + P (2m + 1) ≡ y + 6x mod (7)
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