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Background Knowledge 
• Beatty Sequences? 

 

• Named after Samuel Beatty who wrote about them in 1926            
(Amer. Math. Monthly, 1926) 

• A sequence formed by flooring successive positive multiples of a 
positive irrational number Ɵ 

•  i.e. { LƟ˩, L2Ɵ˩, L3Ɵ˩, … , LnƟ˩ } where Lx˩ is the floor function       
(Weisstein, Eric W. "Beatty Sequence." From MathWorld--A Wolfram Web 
Resource.http://mathworld.wolfram.com/BeattySequence.html) 

 

Example: 

• If Ɵ = √2, Beatty Sequence → {L1.41˩, L2.82˩, L4.24˩…} → {1,2,4…}  
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So what makes Beatty Sequences unique? 

• Given two positive irrational numbers α and β such that 

 
1

α
+

1

β
= 1,  

The union of the corresponding Beatty sequences Lα˩, L2α˩,… and Lβ˩, 
L2β˩,… contain all positive integers without repetition. 

 

Example: 

• If α = √2 ,  β = 2 + √2 

• Set α = {1,2,4,5,7,8,9,…} and Set β = {3,6,10,…} 

• Set α ∪ β = {1,2,3,4,5,6,7,8,9,10…} and Set α ∩ β = { } 

 

 



Modular arithmetic 
System of wrapping integers  around a certain value (the modulus) using the 

“mod” function 

Imagine two whole integers a and q such that 
𝑎𝑛

𝑞
= 𝑘𝑛 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 𝑟𝑛.  

e.g. 
11

5
= 2 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 1 and 

19

5
= 3 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 4 

According to the above relation: 
I. 𝑎𝑛 = 𝑘𝑛𝑞 + 𝑟𝑛  e.g. 11 = (5x2)+1 

II. 𝑟 < 𝑞 𝑚𝑜𝑑𝑢𝑙𝑢𝑠  e.g. 1<5 and 4<5 

III. 𝑎 𝑚𝑜𝑑 𝑞 = 𝑟 →11mod5 =1 and 19mod5 = 4 

Practice Example: 

• It is currently 2:00pm on my analogue watch. What time will it be 13 
hours from now?      
2+13 = 15 (analogue) ≡ 14+13 = 27 (digital) 

15 mod 12 = 3.00am (analogue) ≡ 27 mod 24 = 03:00 (digital) 

 

 
 

 

 

 



Prime number theorem for arithmetic 
progressions and the Chebyshev Bias 

Prime number (p): Positive integer which can only be fully divided (leaving no remainder) by 
1 and itself.  

 

i.e. 
𝑝

1
= 𝑘1 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 0 and 

𝑝

𝑝
= 𝑘2 𝑟𝑒𝑚𝑎𝑖𝑛𝑑𝑒𝑟 0, where K is an integer and variable dividend. 

  
Examples include: {2,3,5,7,11…} 
 
Arithmetic progressions: Sequence of numbers with a constant difference d between 

successive terms e.g. {1,3,5,7,9…} where constant difference d =2. 
 
Theorem: “primes tend to be equally split amongst the various forms qn+a with gcd(a,q) =1 

for any given modulus q. More precisely, we know that for two such eligible values a and b, 
#{primes qn+a ≤ x}
#{primes qn+b ≤ x}

 →1 (as x →∞ )  

 

(“Prime Number Races”, 2006) 



• Chebyshev Bias:  
Despite the prime number theorem for arithmetic progressions, “Chebyshev noticed 

that the remainder upon dividing the primes by 4 gives 3 more often than 1. Similarly, 
dividing the primes by 3 gives 2 more often than 1.” 

i.e. Consider a list of the first n prime numbers mod 4: {2𝑚𝑜𝑑4, 3𝑚𝑜𝑑4, 
5𝑚𝑜𝑑4, … , 𝑝𝑛𝑚𝑜𝑑4} → {2,3,1,... 𝑝𝑛𝑚𝑜𝑑4}  In the above list,  𝜋4,3(𝑝𝑛) > 𝜋4,1(𝑝𝑛)   

 

 

 

 

 

Weisstein, Eric W. "Chebyshev Bias." From MathWorld--A Wolfram Web 

Resource.http://mathworld.wolfram.com/ChebyshevBias.html 
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Research Question(s) 

• How does the distribution of primes between complementary Beatty 
sequences (α and corresponding β) behave? 

 
I. After normalization, do more primes usually fall on one side (α or β)? 

 

II. Do consecutive primes within Beatty sequences repel each other? 

 

III. Is there a Chebyshev Bias within the Beatty sequences? 

 

 
 

 



Research Methods 
Section I of research question 

1. Created a function that derives pairs of complementary Beatty 
sequences (corresponding to α and its complement β) when only 
given the variable irrational number α.  

2. Created a pair of functions (“Beatty1” and “Beatty2”) each of which 
identified and counted the number of primes in each Beatty 
sequence corresponding to variables α and β respectively.  

3. Created a function  that normalized Beatty1 and Beatty2 counts 

4. Ran above functions for different values of α and set ranges 

5. Ran scatter plots representing the difference between Beatty1 and 
Beatty2 (Beatty1-Beatty2) so as to analyze distribution of primes 

 



Results (Section I) 

(Beatty1-Beatty2), α = √2, Range: {n,1,5000000} (Beatty1-Beatty2), α = √2, Range: {n,1,1000000} 



Results (Section I) 

(Beatty1-Beatty2), α = 𝜋, Range: {n,1,1000000} (Beatty1-Beatty2), α = √3, Range: {n,1,1000000} 



Research Methods 
Section II of research question 

1. Created a function “AA” which identified prime numbers within Beatty 
Sequences corresponding to α, and measured the frequency at which 
consecutive prime numbers were within the sequence. 

2. Above function (“AA”) was designed in such a way that it also measured the 
frequency at which consecutive prime numbers were within the sequence 
corresponding to β. These results were stored as the variable “BB.” 

3. Created a function “AB” which identified prime numbers within the Beatty 
sequences corresponding to β, and measured the frequency at which the 
preceding prime number was within the sequence corresponding to α. 

4. Above function (“AB”) was designed in such a way that it also measured the 
frequency at which prime numbers within the Beatty sequence corresponding 
to α were preceded by prime numbers within the sequence corresponding to 
β. These results were stored as “BA.” 

5. Both functions (“AA” and “AB”) were normalized and ran for different values of 
α and β, as well as different ranges after which results were plotted to analyze 
the repulsion patterns. 



Results (Section II) 
α = √3, Range: {n,1,2000000}  α = √2, Range: {n,1,2000000} 

Normalized BA Normalized AA Normalized BB Normalized AB 

Key: 



Results (Section II) 
 α = 𝜋, Range: {n,1,1000000} 

Normalized BA Normalized AA Normalized BB Normalized AB 

Key: 

 α = 𝑒, Range: {n,1,1000000} 



Research Methods 
Section III of research question 

1. Created a function “BeattyP1” that identified and evaluated the number 
of primes congruent to 1mod3 within variable Beatty sequences. 

2. Created a similar function “BeattyP2” that identified and evaluated the 
number of primes congruent to 2mod3 within variable Beatty sequences. 

3. Normalized both functions above, and created a dependent function 
“NormalizedBeattyDif” which evaluated the difference: BeattyP2-
BeattyP1, for different Beatty sequences. 

4. The above process was repeated for a different modulus (mod4), 
whereby number of primes congruent to 1mod4 and 3mod4 were 
evaluated for different Beatty sequences. 

5. The functions were ran for different irrational numbers (to derive various 
Beatty sequences) and different set ranges, after which the results were 
plotted for analysis. 

 

 



Results (Section III) 

NormalizedBeattyDif, mod3, α = √2, Range: {n,1,50000} NormalizedBeattyDif, mod3, α = √3, Range: {n,1,50000} 



Results (Section III) 

NormalizedBeattyDif, mod4, α = √2, Range: {n,1,50000} NormalizedBeattyDif, mod4, α = √3, Range: {n,1,50000} 



Conclusions 
• Section I: 

• After normalization, both Beatty sequences (α and β) occasionally lead in the prime 
race but the consistency is limited to the set ranges and could thus simply be another 
phenomenon in line with “The Law of Small Numbers.” (Prime Number Races, 2006) 

• Section II: 
• Primes within the Beatty sequences examined tend to repel each other at a higher 

frequency relative to the frequency of attraction. 
• Frequency of attraction within set corresponding to α tends to be higher than within 

the set corresponding to β (except for transcendental number e). 
• The variance in repulsion frequencies within each sequence highlights the presence 

of a bias (except within the sequence corresponding to transcendental number 𝜋). 
However, the variance is not large enough to reject the results being consistent with 
randomness. 

• Section III: 
• The Prime race between teams: 1mod3, 2mod3, 1mod4 and 3mod4 within the 

Beatty sequences examined are consistent with the pattern noted in the Chebyshev 
Bias.  
 
 



Notes for future research: 

• What is the nature of the Prime race within Beatty sequences that 
have larger scales? (n > 5× 106) 

• Do Beatty sequences remain consistent with the Chebyshev Bias at 
different moduli (other than 3 and 4)? 

• Is the variance between Prime repulsion frequencies minimized 
within Beatty sequences that correspond to transcendental numbers? 
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