Probabilistic Proof that $1+2+\cdots+n=\frac{n(n+1)}{2}$.

Let X be the sum of two n-sided dice. For $k=2,3, \ldots, n+1$, the probability that $X=k$ is $\frac{(k-1)}{n^{2}}$ because there are $k-1$ ways of adding two positive integers to k, namely $1+(k-1), 2+(k-2), \ldots,(k-1)+1$. For $k=n+i$ with $i=2,3, \ldots, n$, the probability that $X=k$ is $\frac{n-i+1}{n^{2}}$ because there are $n-i+1$ ways of adding up to k with two numbers from $\{1,2, \ldots, n\}$, namely $i+n,(i+1)+(n-1), \ldots, n+i$. Since $2 \leq X \leq 2 n$, then

$$
\begin{aligned}
1 & =\sum_{k=2}^{2 n} \mathbb{P}[X=k]=\sum_{k=2}^{n+1} \frac{k-1}{n^{2}}+\sum_{i=2}^{n} \frac{n-i+1}{n^{2}} \\
1 & =\left(\frac{1}{n^{2}}+\frac{2}{n^{2}}+\cdots+\frac{n}{n^{2}}\right)+\left(\frac{n-1}{n^{2}}+\frac{n-2}{n^{2}}+\cdots+\frac{1}{n^{2}}\right) \\
n^{2} & =(1+2+\cdots+n)+(1+2+\cdots+(n-1)) \\
n^{2} & =2(1+2+\cdots+n)-n .
\end{aligned}
$$

Hence,

$$
1+2+\cdots+n=\frac{n(n+1)}{2} .
$$

-Submitted by Enrique Treviño, Lake Forest College

[^0]
[^0]: doi.org/10.XXXX/amer.math.monthly.122.XX.XXX
 MSC: Primary 60C05, Secondary 05A15

