Sums of Proper Powers

We say that m is a proper power if $m=a^{b}$ for some integers $a, b>1$. In [2], the authors proved that every positive integer $n \geq 33^{17}+12$ can be written as the sum of four proper powers. We improve their result to:

Theorem. All $n \geq 28$ can be represented as a sum of four proper powers. Furthermore, the only exceptions are
$1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,17,18,19,22,23,27$.
Proof. Let $n \geq 33^{3}+12$ be an odd number. Since $\operatorname{gcd}(\phi(32), 3)=1$ (where ϕ is the Euler totient function), a^{3} runs through all odd residue classes modulo 32 as a runs through all odd residues modulo 32 . Let $P \in\left\{3^{3}, 5^{3}, \ldots, 33^{3}\right\}$ be a cube such that $P \equiv n-12 \bmod 32$. Then $n-P=4(8 k+3)$. Gauss showed that every positive integer not congruent to $0,4,7 \bmod 8$ is a sum of three coprime squares [1, p. 262]. Hence we may choose integers x, y, z with $x^{2}+y^{2}+z^{2}=8 k+3$. Looking mod 8 we see x, y, z are all odd, so we may assume $x, y, z \geq 1$. But then $n=P+(2 x)^{2}+(2 y)^{2}+(2 z)^{2}$. Therefore, for all odd $n \geq 33^{3}+12=35949$, we have a representation of n as a sum of four proper powers.

Let $n \geq 49^{3}+45=117693$ be even. Since $\operatorname{gcd}(3, \phi(48))=1$, as a runs through all odd residues modulo $48, a^{3}$ also runs through all the odd residues modulo 48. Therefore, we can find an odd cube $P \in\left\{3^{3}, 5^{3}, \ldots, 49^{3}\right\}$ such that $P \equiv n-45 \bmod 48$. Hence $n=P+(48 k+45)$ for some integer k. Since $48 k+45 \equiv 5 \bmod 8$, there exist integers $x, y, z \geq 0$ such that $x^{2}+y^{2}+$ $z^{2}=48 k+45$ with $\operatorname{gcd}(x, y, z)=1$. We want to show that none of x, y, z is 0 or 1 . First, note that $x^{2}+y^{2} \equiv 0 \bmod 3$ implies $x \equiv y \equiv 0 \bmod 3$. If also $z=0$, then $\operatorname{gcd}(x, y, z) \geq 3$. Therefore $x, y, z \geq 1$. If one of x, y, z is 1 , then (after relabeling) $x^{2}+y^{2}=48 k+44 \equiv 12 \bmod 16$. The squares modulo 16 are $0,1,4,9$. We cannot add two of them to get $12 \bmod 16$; therefore the representation of $48 k+45$ as $x^{2}+y^{2}+z^{2}$ includes only proper powers. Hence, $n=P+x^{2}+y^{2}+z^{2}$ is the sum of four proper powers. Therefore, for $n \geq$ $49^{3}+45$ we have a representation of n as a sum of four proper powers.

To conclude one needs to check $n<117693$. We computed all possible sums of four proper powers up to 117693 and we found all numbers between 1 and 117693 that are not represented as a sum of four proper powers.

REFERENCES

1. Dickson, L. E. (1966). History of the Theory of Numbers, Vol. II: Diophantine Analysis. New York: Chelsea Publishing Co.
2. Schinzel, A., Sierpiński, W. (1965). Sur les puissances propres. Bull. Soc. Roy. Sci. Liège. 34: 550-554.
—Submitted by Paul Pollack, University of Georgia Enrique Treviño, Lake Forest College
doi.org/10.XXXX/amer.math.monthly.122.XX.XXX MSC: Primary 11D85, Secondary 11A07
