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My research interests lie in elementary analytic number theory. Most of my work concerns
finding explicit estimates for character sums. While these estimates are interesting in their
own right, they also are very useful to answer some questions from elementary number theory.
For example, I have used these estimates to bound the least quadratic nonresidue mod p and
to bound the least inert prime in a real quadratic field.

Let χ be a character mod q and let N,M be integers. Consider

Sχ(N,M) =
∑

M<n≤N+M

χ(n).

The first important upper bound on Sχ(N,M) came in 1918 in what we now call the Pólya–
Vinogradov inequality (proven independently). The inequality states that there is a universal
constant c such that |Sχ(N,M)| ≤ c

√
q log q for χ a non-principal Dirichlet character mod q

. Note that, surprisingly, the upper bound does not depend on N , it only depends on the
modulus of the character. It is useful to note that |χ(n)| = 1 or χ(n) = 0 whenever χ
is a Dirichlet character. From this it is trivial to see that |Sχ(N,M)| ≤ N . Now if N is
small compared to q then the Pólya–Vinogradov inequality is not a good improvement on
the trivial bound.

Mathematicians have worked out upper bounds for c, for example Pomerance proved the
following in [18]:

Theorem 1. For χ a primitive character to the modulus q > 1, we have

|Sχ(N,M)| ≤


2

π2

√
q log q +

4

π2

√
q log log q +

3

2

√
q , χ(−1) = 1,

1

2π

√
q log q +

1

π

√
q log log q +

√
q , χ(−1) = −1.

An application of the Pólya–Vinogradov inequality is to put an upper bound on the least
quadratic non-residue mod p a prime. The reason we can do this, is that the function that
gives 1 if it is a quadratic residue, −1 if it is not a quadratic residue and 0 if the number is

not coprime to the modulus is a Dirichlet character (this function is written
(

·
p

)
and it is

called the Legendre symbol). If we show that the sum of this character is small compared to
the number of things we summed, it means that χ must have been −1 at some point, giving
us a quadratic non-residue. Using the Pólya–Vinogradov inequality and a bit of sieving we

can get that the least quadratic non-residue is bounded by q
1

2
√
e

+ε
for any real ε > 0. We

conjecture that the least quadratic non-residue is much smaller than that, in fact, Bach [2]
proved that under the Generalized Riemann Hypothesis (GRH), the least quadratic non-
residue is ≤ 2(log q)2 (this was recently improved on by Li, Lamzouri and Soundararajan in
[7] to ≤ log q2).
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That the Pólya–Vinogradov inequality is sharp follows from the existence ofM andN such
that Sχ(N,M)� √q. In a sense, the inequality is only “off” by log q. In this direction, we
have other nice results. Paley [17] showed that there exists an absolute constant c such that
there exist infinitely many quadratic characters χ (mod q) such that for some integers Nq

and Mq (depending on q), Sχ(Nq,Mq) ≥ c
√
q log log q. Montgomery and Vaughan [13] proved

that under GRH Sχ(N,M)� √q log log q, hence making the Paley result best possible (up
to a constant). This analysis works for quadratic characters, but what about characters
of odd order? Work of Granville and Soundararajan [5] led to the following theorem of
Goldmakher [3]:

Theorem 2. For each fixed odd number g > 1, for χ (mod q) of order g,

Sχ(N,M)�g
√
q(log q)∆g+o(1), ∆g =

g

π
sin

π

g
, q →∞.

Moreover, under GRH
Sχ(N,M)�g

√
q(log log q)∆g+o(1).

Furthermore, there exists an infinite family of characters χ (mod q) of order g and integers
Nq, Mq satisfying

Sχ(Nq,Mq)�ε,g
√
q(log log q)∆g−ε.

Recently, in [8], Levin, Pomerance and Soundararajan considered a “smoothed” version
of the Pólya-Vinogradov inequality. Instead of considering the sum of character values, they
consider the sum of weighted character values

S∗
χ(M,N) :=

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ .

The theorem they proved is the following:

Theorem 3. Let χ be a primitive Dirichlet character to the modulus q > 1 and let M,N be
real numbers with 0 < N ≤ q. Then∣∣S∗

χ(M,N)
∣∣ =

∣∣∣∣∣ ∑
M≤n≤M+2N

χ(n)

(
1−

∣∣∣∣n−MN − 1

∣∣∣∣)
∣∣∣∣∣ ≤ √q − N

√
q
.

The remarkable thing about this inequality is that it is very tight. As a lower bound, in
[1], I proved:

Theorem 4. Let χ be a primitive Dirichlet character to the modulus q > 1. Then, there
exist integers M and N such that ∣∣S∗

χ(M,N)
∣∣ > 2

π2

√
q.

This theorem shows us that the smoothed Pólya–Vinogradov inequality is best possible
up to a constant.

The smoothed Pólya–Vinogradov inequality was used by Levin, Pomerance and Soundarara-
jan to settle a conjecture of Brizolis regarding fixed points of discrete logarithms. I used the
smoothed Pólya–Vinogradov inequality to make an improvement on a theorem of Granville,
Mollin and Williams. In [4], they proved that the least inert prime of a real quadratic field

with discriminant D > 3705 is smaller than
√
D/2. In [19], I improved this to:
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Theorem 5. The least inert prime of a real quadratic field with discriminant D > 1596 is
smaller than D0.45

The proof of the theorem consists of three parts, when D is small (D ≤ 2.6× 1017 for D
odd and D ≤ 1.04 × 1018 for D even), when D is huge (D ≥ 1024) and when D is neither
small nor huge. To check D small, a special computer called the Manitoba Scalable Sieving
Unit (MSSU, see [9]) was used. It ran for about 5 months. Recent developments in sieving
machines (see [23]) suggests that a sieving machine could check up to about 1024, which
would allow us to improve the upper bound in the theorem to D3/7 or better instead of
D0.45. One of the difficulties in the problem is the fact that D need not be prime. When D
is prime we can get much stronger results, indeed, Norton [14] showed that the least inert
prime is at most 4.7p1/4 log p. In [22], I improved Norton’s estimate to 1.1p1/4 log p. To be
able to prove this, strong explicit estimates of the Burgess inequality were needed.

The Burgess inequality is the best estimate we have for character sums, the theorem is
the following:

Theorem 6 (D. Burgess). Let χ be a primitive character mod q, where q > 1, r is a positive
integer and ε > 0 is a real number. Then

|Sχ(N,M)| =

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣� N1− 1
r q

r+1

4r2
+ε

for r = 2, 3 and for any r ≥ 1 if q is cubefree, the implied constant depending only on ε
and r.

Note that Pólya–Vinogradov works for any non-principal character while Burgess works
for primitive characters and the modulus must be cubefree. Norton [16] has extended it to
all moduli by adding an extra term that depends on the number of prime powers in the
factorization of q. I’d like to point out that using Burgess instead of Pólya–Vinogradov

allows us to get that the least quadratic non-residue mod p is bounded above by p
1

4
√
e

+ε
for

large enough p.
As mentioned earlier, to be able to use the inequality in applications, we need to work

out an explicit version of the Burgess inequality. In their analytic number theory book [6],
Iwaniec and Kowalski give a sketch of a proof for the following explicit estimate (they credit
Friedlander and Iwaniec for this argument):

Theorem 7. Let χ be a primitive character mod p, where p is a large enough prime. Let r
be a positive integer, and let M and N be non-negative reals with N ≥ 1. Then

|Sχ(M,N)| =

∣∣∣∣∣ ∑
M<n≤M+N

χ(n)

∣∣∣∣∣ ≤ 30N1− 1
r p

r+1

4r2 (log p)
1
r .

Iwaniec and Kowalski were not looking for the best possible constant. In [21], with an
eye towards getting the best possible constant, I improved this to

Theorem 8. Let p be a prime such that p ≥ 107. Let χ be a non-principal Dirichlet character
mod p. Let r be a positive integer, and let M and N be non-negative reals with N ≥ 1. Then

|Sχ(M,N)| ≤ 2.74N1− 1
r p

r+1

4r2 (log p)
1
r .
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A nice corollary (proved in [21]) that follows from this theorem is

Theorem 9. Let p > 104732, then the least quadratic non-residue modulo p is less than or
equal to p1/6.

To prove Theorem 8 I used the following inequality (which I proved in [22]):

Theorem 10. Let p be a prime. Let w, h and k be integers such that w ≤ 9h, h ≤ p, k ≥ 2
and k | p− 1. Let χ be a character (mod p) of order k. Then

Sw(p, h, χ, k) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

<
(2w)!

2ww!
phw + (2w − 1)p1/2h2w.

The inequality also allowed me to improve results on explicit estimates for the least k-th
power non-residue (see [22]). The inequality has other uses, for example one could use it
to have good explicit bounds on the second least k-th power non-residue and to bound H,
the largest integer such that there exists an integer N such that χ(N + 1) = χ(N + 2) =
. . . = χ(N +H). In [11], McGown proved that H < 7.06p1/4 log p whenever p > 5 · 1018 and
H < 7p1/4 log p when p > 5 · 1055. Norton claimed stronger results without proof (see [15]).
In [20] I was able to improve both McGown’s results and Norton’s claims by showing that
H < 3.64p1/4 log p for all odd p and H < 1.55p1/4 log p whenever p > 2.5 · 109.

Recently, I started working on the problem of bounding the least primitive root modulo
p. Working with Kevin McGown and Timothy Trudgian, assuming GRH, we settled a
conjecture by Grosswald that states that for p > 409, the least primitive root modulo p is
smaller than

√
p− 2. The main result in our paper ([12]) is the following explicit estimate:

Theorem 11. Assume GRH and p ≥ 109. The least prime primitive root ĝ(p) satisfies

ĝ(p) ≤
(

8

5
(2ω(p−1)−1 − 1) log(p)

)2

.

I’m currently working (or planning to work) on the following projects:

• Together with Kevin McGown, we’re working on explicit bounds for Siegel zeros.

• Together with Kevin McGown and Timothy Trudgian, we’re working on improving our
bounds for least primitive roots assuming GRH.

• Together with Kevin McGown and Timothy Trudgian, we’re working on improving our
bounds for least primitive roots unconditionally.

• Together with Kevin McGown we’re planning on trying to classify Norm-Euclidean
cubic cyclic fields. Mcgown has classified them assuming GRH in [10].
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