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Abstract. Let χ be a non-principal Dirichlet character to the prime mod-

ulus p. In 1963, Burgess showed that the maximum number of consecutive
integers H for which χ remains constant is O

(
p1/4 log p

)
. This is the best

known asymptotic upper bound on this quantity. Recently, McGown proved

an explicit version of Burgess’s theorem, namely that H < 7.06p1/4 log p for
p ≥ 5 ·1018. Preobrazhenskaya, in the Legendre symbol case, showed that H <(

π√
6 log 2

+ o(1)
)
p1/4 log p. By improving an inequality of Burgess on charac-

ter sums and using some ideas of Norton, we prove that H < 1.55p1/4 log p
whenever p ≥ 2.5 · 109, and H < 3.64p1/4 log p for all p.

1. introduction

Let χ be a non-principal Dirichlet character to the prime modulus p. In 1963,
Burgess showed (see [3]) that the maximum number of consecutive integers for
which χ remains constant is O(p1/4 log p). This is the best known asymptotic upper
bound on this quantity. Recently, McGown (see [9]) proved an explicit version of
Burgess’s theorem:

Theorem A. If χ is any non-principal Dirichlet character to the prime modulus
p which is constant on (N,N +H], then

H <

{
πe
√

6

3
+ o(1)

}
p1/4 log p,

where the o(1) terms depends only on p. Furthermore,

H ≤

 7.06p1/4 log p, for p ≥ 5 · 1018,

7p1/4 log p, for p ≥ 5 · 1055.

Stronger bounds were announced but not proven by Norton in 1973 (see [11]),
namely that H ≤ 2.5p1/4 log p for p > e15 ≈ 3.27 × 106 and H < 4.1p1/4 log p, in
general. Preobrazhenskaya in [12] showed that when the Dirichlet character is the

Legendre symbol we have H <
(

π√
6 log 2

+ o(1)
)
p1/4 log p.1
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1The proof by Preobrazhenskaya can be extended to any Dirichlet character of prime modulus

and is almost as strong as the inequality we have in this paper. The constant provided by

Preobrazhenskaya is approximately 1.8503.
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The main ingredient in the proof of McGown is estimating

Sχ(h,w) =

p∑
m=1

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

,

where p is a prime, χ is a non-principal character mod p, and h ≤ p is a positive
integer. Burgess, using Weil’s work on the Riemann Hypothesis for function fields
(see [18]), showed in [2] that Sχ(h,w) < (4w)w+1phw + 2wp1/2h2w. McGown im-

proved this estimate (see [9]) to Sχ(h,w) < 1
4 (4w)wphw + (2w− 1)p1/2h2w. In [16],

with the further restriction that w ≤ 9h, the author improved the estimate to

(1) Sχ(h,w) <
(2w)!

2ww!
phw + (2w − 1)p1/2h2w.

In this paper, with help from the upper bound (1) on Sχ(h,w) and an improve-
ment on McGown’s lower bound for Sχ(h,w), we are able to prove Norton’s claim
and go a little further.

Theorem 1. If χ is any non-principal Dirichlet character to the prime modulus p
which is constant on (N,N +H], then

H <

{
π

2

√
e

3
+ o(1)

}
p1/4 log p,

where the o(1) terms depends only on p. Furthermore,

H ≤

 3.64p1/4 log p, for all odd p,

1.55p1/4 log p, for p ≥ 2.5 · 109.

Remark 1. The constant π
2

√
e
3 = 1.49522 . . . is 1

2
√
2e

= 0.214441 . . . times the size

of McGown’s asymptotic constant.

One reason we study this problem is that it is a generalization of the problem
of finding the least k-th power non-residue mod p (the case N = 0) and it allows
one to bound the maximum number of consecutive integers that belong to a given
coset Cp/C

k
p , where Cp = (Z/pZ). Furthermore, McGown (see [8]) was able to

use bounds on the least k-th power non-residue and the second least k-th power
non-residue to put a bound on the size of the discriminant of a Norm-Euclidean
Galois cubic field. Regarding the least k-th power non-residue, Norton proved that
the least k-th power non-residue is bounded by 4.7p1/4 log p in [10]. The author
improved this to 1.1p1/4 log p in [16].

Notation. Most of our notation is standard. A possible exception is our notation
for

∏
p|n p (the algebraic radical of n), written here as rad(n) (some papers use

the notation γ(n)). We write µ(n) for the Moebius function, (a, b) for the greatest
common divisor of the integers a and b, and we write log x for the natural logarithm
of x.

2. Some Lemmas

To prove Theorem 1 we will need a lower bound for Sχ(h,w). Before we can find
a lower bound for Sχ(h,w) we need to prove four lemmas. The first lemma is an
estimate on the number of squarefree numbers up to a real number X. The second
lemma is an upper bound on the tail of the sum of µ(d)/d2. The third lemma is
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a nice result concerning µ(d)/d. The first three lemmas will be used to prove the
main lemma, which is an estimate which will be crucial in giving a lower bound for
Sχ(h,w).

Lemma 1. For real X ≥ 1, the number of squarefree integers in [1, X] is at most
2
3X + 2.

Proof. The number of squarefree numbers up to X is at most

bXc −
⌊
X

4

⌋
−
⌊
X

9

⌋
+

⌊
X

36

⌋
≤ 2

3
X + 2.

�

Lemma 2. For real X ≥ 1 and a a positive integer we have

(2)

∣∣∣∣∣∣∣∣
∑
d>X

(d,a)=1

µ(d)

d2

∣∣∣∣∣∣∣∣ <
1

X
,

Proof. Note that for any positive integer d we have that 1
d2 is smaller than

∫ d+1/2

d−1/2

dt

t2
.

Thus ∣∣∣∣∣∣∣∣
∑
d>X

(d,a)=1

µ(d)

d2

∣∣∣∣∣∣∣∣ ≤
∑
d>X

∫ d+ 1
2

d− 1
2

dt

t2
=

∫ ∞
X− 1

2

dt

t2
=

1

X − 1
2

.

To change X − 1/2 into X, note that there is at least one d missing in the interval
[X,X + 4], since we only take squarefree d’s in the sum. Thus the absolute value
of the sum is smaller than 1

X− 1
2

− 1
(X+4)2 . This is smaller than 1

X once X ≥ 11,

proving the lemma for real X ≥ 11.
To complete the proof for X ≥ 1 we need to verify (2) for X ≤ 11. To do this

we use the fact that
∑
d

(d,a)=1

µ(d)

d2
=

6

π2

∏
p|a

(
1− 1

p2

)−1
, which implies that

∑
d>X

(d,a)=1

µ(d)

d2
=

6

π2

∏
p|a

(
1− 1

p2

)−1
−

∑
d≤X

(a,d)=1

µ(d)

d2
=
∏
p 6 | a

(
1− 1

p2

)
−

∑
d≤X

(a,d)=1

µ(d)

d2
.

Let M =
∏
p≤11

p = 2310 and m = (rad (a),M). Hence, for d ≤ X ≤ 11 we have

(d, a) = (d,m). We also have that p | Mm implies p 6 | a. Since (1− 1/p2) < 1, then

(3)
∏
p 6 | a

(
1− 1

p2

)
−

∑
d≤X

(a,d)=1

µ(d)

d2
≤
∏
p|Mm

(
1− 1

p2

)
−

∑
d≤X

(d,m)=1

µ(d)

d2
.

Now, using that p | a implies p | m and that (1− 1/p2)−1 > 1 yields

(4)
6

π2

∏
p|a

(
1− 1

p2

)−1
−

∑
d≤X

(a,d)=1

µ(d)

d2
≥ 6

π2

∏
p|m

(
1− 1

p2

)−1
−

∑
d≤X

(m,d)=1

µ(d)

d2
.
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One can now manually check that the right hand side of (3) is less than 1
X+1 and

that the right hand side of (4) is greater than − 1
X+1 for integer X ∈ [1, 11] and

the 32 possible values of m. This shows that

∣∣∣∣∣∣∣∣
∑
d>X

(d,a)=1

µ(d)

d2

∣∣∣∣∣∣∣∣ <
1

X+1 for all integers

X ∈ [1, 11]. Since this is true for all integers X ∈ [1, 11], then we have (2) for any
real X ∈ [1, 11]. �

Tao in an expository article [15] proved the following lemma 2. We give a different
proof inspired by the online lecture notes of Hildebrand [6].

Lemma 3. For X ≥ 1 a real number and a a positive integer:

(5)

∣∣∣∣∣∣∣∣
∑
d≤X

(d,a)=1

µ(d)

d

∣∣∣∣∣∣∣∣ ≤ 1.

Proof. Let

ea(n) :=

 1, if rad (n) | rad (a),

0, otherwise .

Now consider the sum

Sa(X) :=
∑
n≤X

ea(n).

First note that if Sa(X) = bXc, then the only term summed in (5) is d = 1, showing
that the sum is 1. Therefore we may assume that Sa(X) < bXc. Now,

Sa(X) =
∑
n≤X

ea(n) =
∑
n≤X

∑
d|n

(d,a)=1

µ(d) =
∑
d≤X

(d,a)=1

µ(d)

⌊
X

d

⌋
.

Therefore
(6)∣∣∣∣∣∣∣∣X

∑
d≤X

(d,a)=1

µ(d)

d

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣Sa(X) +
∑
d≤X

(d,a)=1

µ(d)

{
X

d

}∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
∑
d≤X

rad(d)|rad(a)

1 +
∑
d≤X

(d,a)=1

µ(d)

{
X

d

}∣∣∣∣∣∣∣∣ .
Note that the conditions rad(d) | rad(a) and (d, a) = 1 overlap only when d = 1.
Therefore the right hand side of (6) is ≤ bXc + 1. Now, note that since Sa(X) <
bXc, there is a prime j ≤ X such that (j, a) = 1. Since µ(j) = −1, we can conclude
that the right hand side of (6) is ≤ bXc. This concludes the proof of (5).

�

The following is the main lemma of the section:

2Generalizations of this inequality can be found in [5] and [14].
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Lemma 4. For a and b coprime integers and X ≥ 1 a real number, we have∑
q≤X

∑
0≤t<q

gcd (at+b,q)=1

(
X

q
− 1

)
≥ 3

π2
X2 − 13

12
X − 1

4
.

Proof. Start by using inclusion-exclusion to get the sum equal to∑
q≤X

∑
0≤t<q

∑
d|gcd (at+b,q)

µ(d)

(
X

q
− 1

)
.

Writing q = rd and exchanging summation gives us∑
d≤X

∑
r≤X

d

∑
0≤t<rd

at≡−b mod d

µ(d)

(
X

rd
− 1

)
.

Since gcd (a, b) = 1, the congruence at ≡ −b mod d has a solution if and only if
gcd (d, a) = 1. Note that in such a case, there are r values of t such that 0 ≤ t < rd
and at ≡ −b mod d. Therefore the sum becomes

(7)
∑
d≤x

gcd (d,a)=1

µ(d)
∑
r≤X

d

∑
0≤t<rd

at≡−b mod d

(
X

rd
− 1

)
=

∑
d≤X

gcd (d,a)=1

µ(d)

d

∑
r≤X

d

(X − rd) .

Writing X
d =

⌊
X
d

⌋
+
{
X
d

}
we evaluate the inside sum of (7) as

∑
r≤X

d

(X − rd) = X

⌊
X

d

⌋
−
dbXd c

(
bXd c+ 1

)
2

=
X2

2d
− X

2
+
d{Xd }

(
1− {Xd }

)
2

.

Therefore (7) becomes

(8)
∑
d≤X

gcd (d,a)=1

µ(d)

d

(
X2

2d
− X

2
+
d{Xd }

(
1− {Xd }

)
2

)
=

X2

2

∑
d≥1

(d,a)=1

µ(d)

d2
−X

2

2

∑
d>X

(d,a)=1

µ(d)

d2
−X

2

∑
d≤X

(d,a)=1

µ(d)

d
+

1

2

∑
d≤X

(d,a)=1

µ(d)

{
X

d

}(
1−

{
X

d

})
.

Now,

(9)
∑
d≥1

(d,a)=1

µ(d)

d2
=

6

π2

∏
p|a

(
1− 1

p2

)−1
≥ 6

π2
.

Using Lemma 1 we get

(10)
1

2

∑
d≤X

(d,a)=1

µ(d)

{
X

d

}(
1−

{
X

d

})
≥ −1

8

∑
d≤X

d squarefree

1 ≥ − 1

12
x− 1

4
.

Combining (9), (10), Lemma 2 and Lemma 3 with (8) yields the proof. �
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3. Lower bound for Sχ(h,w)

Now we are ready to find a lower bound for Sχ(h,w). The proposition we shall
prove improves Proposition 3.3 in [9] by a factor of 4 and it also has a smaller
error term (saving a logX). Another improvement is that the proposition has a

less demanding condition for H, namely that H ≤
(
h
2

)2/3
p1/3 instead of H ≤

(2h− 1)1/3p1/3.

Throughout, let A =
3

π2
.

Proposition 1. Let h and w be positive integers. Let χ be a non-principal Dirichlet
character to the prime modulus p which is constant on (N,N +H] and such that

4h ≤ H ≤
(
h

2

)2/3

p1/3.

Let X := H/h, then X ≥ 4 and

Sχ(h,w) ≥
(

3

π2

)
X2h2w+1g(X) = AH2h2w−1g(X),

where

g(X) = 1−
(

13

12AX
+

1

4AX2

)
.

Proof. The proof follows McGown’s treatment of the method of Burgess with some
modifications inspired by the work of Norton.

By Dirichlet’s Theorem in Diophantine approximation (see Theorem 7 on p. 101
of [4]), there exist coprime integers a and b satisfying 1 ≤ a ≤

⌊
2H
h

⌋
and

(11)

∣∣∣∣aNp − b
∣∣∣∣ ≤ 1⌊

2H
h

⌋
+ 1
≤ h

2H
.

Let’s define the real interval:

I(q, t) :=

(
N + pt

q
,
N +H + pt

q

]
,

for integers 0 ≤ t < q ≤ X and gcd (at+ b, q) = 1.
The reason I(q, t) is important, is that χ is constant inside the interval. Indeed,

if m ∈ I(q, t), then χ(qm − pt) = χ(N + i) for some i such that 0 < i ≤ H.
Therefore χ(m) = χ̄(q)χ(N + i). We will show that the I(q, t) are disjoint and that
I(q, t) ⊆ (0, p).

First, let’s show that the I(q, t) are disjoint. If I(q1, t1) and I(q2, t2) overlap

then either N+pt1
q1
≤ N+pt2

q2
< N+H+pt1

q1
or N+pt2

q2
≤ N+pt1

q1
< N+H+pt2

q2
.

In the first case, multiply all by q1q2 and then subtract Nq2 + pt1q2. This yields

0 ≤ N(q1 − q2) + p(t2q1 − t1q2) < Hq2.

Analogously, for the second case, we get

−Hq1 < N(q1 − q2) + p(t2q1 + t1q2) ≤ 0.

Therefore,

(12)

∣∣∣∣N(q1 − q2)

p
+ t2q1 − t1q2

∣∣∣∣ < max {q1, q2}H
p

≤ XH

p
.

Therefore, combining (11) and (12), we get
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∣∣∣∣ =

∣∣∣∣(Np +

(
b

a
− N

p

))
(q1 − q2) + t2q1 − t1q2

∣∣∣∣
≤
∣∣∣∣Np (q1 − q2) + t2q1 − t1q2

∣∣∣∣+

∣∣∣∣( ba − N

p

)
(q1 − q2)

∣∣∣∣
<
XH

p
+
h|q1 − q2|

2aH
≤ XH

p
+

Xh

2aH
= X

2aH2 + hp

2aHp
=

2aH2 + hp

2ahp
.

Since a ≤ 2H
h and H3 ≤ h2p

4 by hypothesis, then

2H2a+ ph

2ahp
≤

4H3

h + ph

2ahp
≤ 2ph

2ahp
=

1

a
.

Therefore ∣∣∣∣ ba (q1 − q2) + t2q1 − t1q2
∣∣∣∣ < 1

a
,

implying that
at1 + b

q1
=
at2 + b

q2
.

However, since gcd (at1 + b, q1) = 1 and gcd (at2 + b, q2) = 1, then q1 = q2 and
therefore t1 = t2. We have now proved that the I(q, t) are disjoint.

Since χ(p) = 0, we can assume without loss of generality that N + H < p.

Now let’s prove that I(q, t) ⊆ (0, p). If m ∈ I(q, t), then m > N+pt
q ≥ 0. Also,

m ≤ N+H+pt
q < p(t+1)

q ≤ p.
Since the I(q, t) are disjoint and they are contained in (0, p), we have

Sχ(h,w) =

p−1∑
m=0

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥
∑
q,t

∑
m∈I(q,t)

∣∣∣∣∣
h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

≥ h2w
∑
q,t

(
H

q
− h
)

= h2w+1
∑
q≤X

∑
0≤t<q

gcd (at+b,q)=1

(
X

q
− 1

)
.

The last inequality is true since there are at least H
q − h subsets of h consecutive

integers in I(q, t), and when there are h consecutive integers m,m+1, . . .m+h−1,
we have ∣∣∣∣∣

h−1∑
l=0

χ(m+ l)

∣∣∣∣∣
2w

= h2w.

To finish the proof of the Proposition we use Lemma 4 �

4. Proof of the main theorem

Proof of Theorem 1. Let h and w be positive integers, and let A = 3
π2 . Assume

that 4h ≤ H ≤
(
h
2

)2/3
p1/3. Then by Proposition 1 and (1) we have (for w ≤ 9h):

AH2h2w−1g(X) ≤ Sχ(h,w) <
(2w)!

2ww!
phw + (2w − 1)p1/2h2w.

Therefore,

(13) AH2g(X) < f(w, h),
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where

f(w, h) =
(2w)!

2ww!
ph1−w + (2w − 1)p1/2h.

Using techniques from Calculus and an explicit version of Stirling’s formula (such as
the one in [13] we can choose optimal w and h to make f(w, h) as small as possible.
For the details of this computation see [16] or [17]. For large p, good choices for h
and w are

h =

⌊(
e

2
+

2e+ 1

log p

)
log p

⌋
,

and

w =

⌊
log p

4

⌋
+ 1.

From there one can obtain

(14) f(w, h) <

(
e

4
+

5e+ 1

2 log p
+

8e+ 3

log2 p
+

8e+ 4

log3 p

)
√
p log2 p = K(p)

√
p log2 p.

Assume that p ≥ p0 and H ≥ C(p0) p1/4 log p. We may assume C(p0) ≥ π
√

e
12 ,

hence

X =
H

h
≥ C(p0)p1/4 log p(

e
2 + 2e+1

log p

)
log p

≥
π
√

e
12(

e
2 + 2e+1

log p

)p1/4.
Let X(p0) be defined as

X(p0) =
π
√

e
12(

e
2 + 2e+1

log p0

)p1/40 .

Note that since H ≥ π
√

e
12p

1/4 log p and h <
(
e
2 + 2e+1

log p

)
log p, then H ≥ 4h as

long as p ≥ 1500. Now let

C(p0) =

√
K(p0)

Ag(X(p0))
,

with K(p) introduced in (14).
The left hand side of (13) can therefore be bounded from below for p ≥ p0:

AH2g(X) ≥ A (C(p0))
2√

p log2 p g(X(p0))

≥ K(p0)
√
p log2 p ≥ K(p)

√
p log2 p > f(w, h),

giving us a contradiction, proving thatH < C(p0)p1/4 log p wheneverH ≤
(
h
2

)2/3
p1/3.

Note that if H >
(
h
2

)2/3
p1/3, then χ is constant on a subset of H of cardinal-

ity at most
(
h
2

)2/3
p1/3. Therefore, H < C(p0)p1/4 log p whenever

(
h
2

)2/3
p1/3 ≥

C(p0)p1/4 log p. For p ≥ 1010 we have that C(p0)p1/4 log p <
(
h
2

)2/3
p1/3, which

implies that for p ≥ 1010, H < C(p0)p1/4 log p.
It is not hard to see that C(p0) = π

√
e
12 + o(1), thus proving the first assertion

in the Theorem.
Table 1 shows values of C(p0) for different values of p0.
We have been able to attack the problem with asymptotic choices for h and w,

but we can fix the values of h and w and improve the bounds.
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p0 C(p0)
1010 1.86591
1012 1.79646
1015 1.73289
1018 1.69225
1020 1.6722
1030 1.6126
1040 1.58304
1050 1.56537
1060 1.55362
1064 1.54995

Table 1. Upper bound H on the number of consecutive residues
with equal character value. For p ≥ p0, H < C(p0)p1/4 log p.

From Table 1 we have established that H < 1.55p1/4 log p when p ≥ 1064.
Therefore to finish the proof of the theorem, we need to deal with the interval
2.5 · 109 < p < 1064.

Let

X(p) =
π
√

e
12

h
p1/4,

and let γ(p, w, h) be defined in the following way:

γ(p, w, h) =

√
f(w, h)

A
√
p log2 p g(X(p))

.

Then by similar arguments as before we have H < γ(p, h, w)p1/4 log p whenever

h and w are picked such that 4h ≤ γ(p, h, w)p1/4 log p <
(
h
2

)2/3
p1/3 and w ≤ 9h.

Hence, all we want is for γ(p, h, w) to be at most 1.55, for 4h ≤ 1.55p1/4 log p <
h2/3p1/3. By picking w’s and h’s as in the Table 2, we complete the proof for
p > 2.5 · 109 (noticing that with h and w fixed, γ(p, w, h) is concave up, allowing
us to just check the endpoints of the intervals).

Let’s now prove that for all p we have H < 3.64p1/4 log p. It is true for p = 2
since 3.64 · 21/4 log 2 > 1. Now, for 1.9 ≤ p ≤ 3 · 106, it is true because of the
following inequality of Brauer [1] (established with elementary methods):

H <
√

2p+ 2 < 3.64p1/4 log p.

Assume p > 1.9 ·106. We’re going to show that in this case, in fact H < 3p1/4 log p.

Note that we have a restriction on h since we want H <
(
h
2

)2/3
p1/3 to be able to use

our machinery. If h = 94, then for p ≥ 1.9 · 106 we have
(
h
2

)2/3
p1/3 > 3p1/4 log p.

Using w = 2, we have γ(p, w, h) < 3 whenever p ∈ [3 · 106, 108]. Now picking w = 3
we get γ(p, w, h) < 3 whenever p ∈ [108, 1011]. But, for p > 2.5 · 109, we can use
the bound of H < 1.55p1/4 log p, completing the proof. �

Remark 2. As mentioned earlier, Norton announced (but didn’t give details) that
he could prove H < 4.1p1/4 log p for all odd p and H < 2.5p1/4 log p for p > e15 ≈
3.27 × 106. In Theorem 1 we prove something slightly better than his first claim,
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w h p w h p w h p
6 26 [2.5 · 109, 1010] 6 28 [1010, 4 · 1010] 7 28 [4 · 1010, 1011]
7 32 [1011, 1012] 7 37 [1012, 1013] 8 41 [1013, 1014]
8 44 [1014, 1015] 9 45 [1015, 1016] 9 51 [1016, 1017]
9 59 [1017, 1018] 10 62 [1018, 1019] 11 63 [1019, 1020]
11 71 [1020, 1021] 12 72 [1021, 1023] 13 79 [1023, 1025]
15 82 [1025, 1027] 15 96 [1027, 1029] 17 97 [1029, 1031]
18 105 [1031, 1033] 18 119 [1033, 1035] 19 127 [1035, 1037]
20 135 [1037, 1039] 20 149 [1039, 1041] 22 150 [1041, 1043]
23 158 [1043, 1046] 25 166 [1046, 1049] 27 174 [1049, 1052]
29 183 [1052, 1055] 31 191 [1055, 1058] 33 200 [1058, 1062]
33 215 [1062, 1064]

Table 2. As an example on how to read the table: when w = 10
and h = 62, then γ(p, w, h) < 1.55 for all p ∈ [1018, 1019]. It is also
worth noting that the inequalities 4h ≤ 1.55p1/4 log p < h2/3p1/3

and w ≤ 9h are also verified for each choice of w and h.

but it is hard to judge with his second claim (as our better bound kicks in later). To
fill the gap, I will now show that H < 2.4p1/4 log p for p > e15 (a slightly stronger
claim than Norton’s). Note that we need only fill in the gap e15 < p ≤ 2.5 × 109.

For h ≥ 67 we have 2.4p1/4 log p <
(
h
2

)2/3
p1/3 whenever p > e15. Therefore we

have H < γ(p, w, 67)p1/4 log p for p > e15. We note that γ(p, 2, 67) < 2.4 when
p ∈ (e15, 107.5) and γ(p, 3, 67) < 2.4 when p ∈ [107.5, 2.5 ·109], completing the proof
of our claim.

Remark 3. If we’re looking for the maximum number of consecutive non-residues
for which χ remains constant, then we can do a little better than H < 3.64p1/4 log p.
In fact we can prove H < 3p1/4 log p for all odd p. Let’s prove it. It is true for p = 3
and for p = 5 since in both cases we have 3p1/4 log p > p. Now, for 7 ≤ p ≤ 2 · 106,
it is true because of the following inequality of Hudson [7]3 :

H < p1/2 + 22/3p1/3 + 21/3p1/6 + 1 < 3p1/4 log p.

We can conclude by noting that for p > 1.9 · 106, H < 3p1/4 log p.
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The inequality uses a clever construction that is able to use information on g(p, k) to bound the
number of consecutive non-residues for which χ remains constant. However, it does not appear to

extend to include the case of the maximum number of consecutive residues
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18. André Weil, On some exponential sums, Proc. Nat. Acad. Sci. U. S. A. 34 (1948), 204–207.

MR 0027006 (10,234e)

Department of Mathematics and Statistics, Swarthmore College, Swarthmore, Penn-

sylvania 19081
E-mail address: etrevin1@swarthmore.edu


