Prime gaps: a breakthrough in number theory

Enrique Treviño

Seminario Interuniversitario de Investigación en Ciencias Matemáticas, March 1, 2014

Enrique Treviño Prime gaps: a breakthrough in number theory

イロト イポト イヨト イヨト

Introduction

The first 10 prime numbers are:

2, 3, 5, 7, 11, 13, 17, 19, 23, 29.

The gaps between them are:

1, 2, 2, 4, 2, 4, 2, 4, 6.

A few questions about gaps:

- Can we have arbitrarily large gaps between two consecutive primes?
- What is the average gap?
- If we consider all primes less than a bound (let's call it x) what is the biggest gap?
- Does 2 appear infinitely often as a gap between two primes?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Prime Gaps

Can we have arbitrarily large gaps between two consecutive primes?

Yes,

n! + 2, n! + 3, ..., n! + n are all composites for any $n \ge 2$, so there is at least a gap of n! + (n + 1) - (n! + 1) = n between two consecutive primes.

• If we consider all primes less than *x*, what is the average gap?

The prime number theorem implies that the k-th prime is approximately $k \log k$, from that it easy to show that the average gap is $\log x$.

・ロト ・ 理 ト ・ ヨ ト ・

Large Gaps

If we consider all primes less than a bound (let's call it *x*) what is the biggest gap?

Consider the proof using n! + 2, n! + 3,.... This shows a gap of n, but between numbers of size n!. This proof would only yield a gap of the order $\log x / \log \log x$. This doesn't even match the average gap!

Erdős proved that you can beat the average gap by proving the largest gap is at least

$$C\log x \frac{\log\log x}{(\log\log\log x)^2},$$

for some constant C. In 1963 Rankin improved this to

$$c_0 \log x \frac{\log \log x \log \log \log \log x}{(\log \log \log x)^2}.$$

Twin Prime Conjecture

Does 2 appear infinitely often as a gap between two primes?

The twin prime conjecture conjectures that the answer to this is yes. In fact using a probabilistic heuristic we can even predict how many twin prime pairs we should have up to *x*. The conjecture is that there are about $C_2 x/(\log x)^2$ for a special constant C_2 called the twin prime constant. We can't prove the twin prime conjecture, but can we say anything about "short gaps" between primes?

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Twin Prime Conjecture

Our main question here is whether 2 appears infinitely often or not as a gap between primes. Note that this is equivalent to:

Conjecture (Twin Prime Conjecture)

Let $d_n = p_{n+1} - p_n$ where p_n is the n-th prime number. Then

 $\liminf_{n\to\infty} d_n=2.$

Note that by the prime number theorem:

$$\liminf_{n\to\infty}\frac{d_n}{\log p_n}\leq 1.$$

くロト (過) (目) (日)

Results on short gaps

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1.$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1 - c, \text{ for some } c > 0 \text{ (Erdős, 1940).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2} \text{ (Bombieri-Vinogradov, 1966).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2}e^{-\gamma} = 0.2807... \text{ (Maier 1988).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1/4 \text{ (Maier).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} = 0.(\text{Goldston} - \text{Pintz} - \text{Yildirim}, 2005)$$

ヘロト 人間 とくほとくほとう

Results on short gaps

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1.$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1 - c, \text{ for some } c > 0 \text{ (Erdős, 1940).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2} \text{ (Bombieri-Vinogradov, 1966).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2}e^{-\gamma} = 0.2807... \text{ (Maier 1988).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1/4 \text{ (Maier).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} = 0.(\text{Goldston} - \text{Pintz} - \text{Yildirim, 2005})$$

ヘロト 人間 とくほとくほとう

Results on short gaps

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1.$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1 - c, \text{ for some } c > 0 \text{ (Erdős, 1940).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2} \text{ (Bombieri-Vinogradov, 1966).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2} e^{-\gamma} = 0.2807 \dots \text{ (Maier 1988).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1/4 \text{ (Maier).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} = 0.(\text{Goldston} - \text{Pintz} - \text{Yildirim, 2005})$$

ヘロト 人間 とくほとくほとう

Results on short gaps

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1.$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1 - c, \text{ for some } c > 0 \text{ (Erdős, 1940).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2} \text{ (Bombieri-Vinogradov, 1966).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le \frac{1}{2}e^{-\gamma} = 0.2807... \text{ (Maier 1988).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \le 1/4 \text{ (Maier).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} = 0.(\text{Goldston} - \text{Pintz} - \text{Yildirim, 2005})$$

ヘロト 人間 とくほとくほとう

₹ 990

Results on short gaps

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \leq 1.$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \leq 1 - c, \text{ for some } c > 0 \text{ (Erdős, 1940).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \leq \frac{1}{2} \text{ (Bombieri-Vinogradov, 1966).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \leq \frac{1}{2}e^{-\gamma} = 0.2807 \dots \text{ (Maier 1988).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} \leq 1/4 \text{ (Maier).}$$

•
$$\liminf_{n \to \infty} \frac{d_n}{\log p_n} = 0.(\text{Goldston} - \text{Pintz} - \text{Yildirim, 2005})$$

ヘロト 人間 とくほとくほとう

Goldston-Pintz-Yildirim

Theorem (GPY)

Let $\epsilon > 0$,

$$\liminf_{n\to\infty}\frac{d_n}{(\log p_n)^{1/2+\epsilon}}=0.$$

Furthermore, if the Elliott-Halberstam conjecture is true

 $\liminf_{n\to\infty} d_n \leq 16.$

Enrique Treviño Prime gaps: a breakthrough in number theory

イロト イポト イヨト イヨト

Bombieri-Vinogradov

Let

$$\theta(x; q, m) = \sum_{\substack{p \leq x \\ p \equiv m \bmod q}} \log p.$$

Theorem (Bombieri-Vinogradov)

Let A > 0 be fixed. There exist constants B = B(A) and c = c(A) such that

$$\sum_{q \leq Q} \max_{m \bmod q} \left| \theta(x; q, m) - \frac{x}{\phi(q)} \right| \leq c \frac{x}{(\log x)^A},$$

for $Q = \frac{\sqrt{x}}{\log x^A}$.

Elliott-Halberstam

Let

$$heta(x;q,m) = \sum_{\substack{p \leq x \\ p \equiv m \bmod q}} \log p.$$

Conjecture (Elliott-Halberstam)

For any fixed A > 0 and 0 $< \eta < 1/2$, There exists a constant c such that

$$\sum_{q \leq Q} \max_{m \bmod q} \left| heta(x;q,m) - rac{x}{\phi(q)}
ight| \leq c rac{x}{(\log x)^A},$$

for $Q = x^{1/2+\eta}$.

3

ヘロト ヘアト ヘビト ヘビト

GPY Main Theorem

The set $\{a_1, a_2, ..., a_k\}$ of integers $a_1 < a_2 < ..., a_k$ is said to be admissible if there is no prime *p* such that *p* divides $P(n) = (n + a_1)(n + a_2) \cdots (n + a_k)$ for all integers *n*.

Theorem

Let $k \ge 2, l \ge 1$ be integers and $0 < \eta < 1/2$ such that

$$1+2\eta>\left(1+\frac{1}{2l+1}\right)\left(1+\frac{2l+1}{k}\right).$$

If the Elliott Halberstam conjecture is true for $Q = x^{1/2+\eta}$, then if $\{a_1, a_2, ..., a_k\}$ is admissible, then there are infinitely many integers n such that at least two of $n + a_1, n + a_2, ..., n + a_k$ are prime.

Zhang's Theorem

Theorem (Zhang, May 14 2013)

Let A > 0. There exist constants eta, δ , c > 0 such that for any given integer a, we have,

$$\sum_{\substack{q \leq Q \\ (q,m)=1 \\ q \text{ is } y-smooth \\ q \text{ squarefree}}} \left| \theta(x; q, m) - \frac{x}{\phi(q)} \right| \leq c \frac{x}{(\log x)^A},$$

where $Q = x^{1/2+\eta}$ and $y = x^{\delta}$.

Zhang managed to prove this with $\eta/2 = \delta = 1/1168$.

ヘロト ヘアト ヘビト ヘビト

Zhang's Theorem

Consequences:

Theorem (Zhang)

Let $k \ge 3500000$. If $\{a_1, a_2, ..., a_k\}$ is an admissible set, then there are infinitely many n for which at least two of $n + a_1, n + a_2, ..., n + a_k$ are prime.

Corollary (Zhang)

$\liminf_{n\to\infty} d_n \leq 7000000.$

Enrique Treviño Prime gaps: a breakthrough in number theory

イロト イポト イヨト イヨト

Polymath8 Progress

Date	$arpi$ or $(arpi,\delta)$	<i>k</i> ₀	Н
Aug 10 2005		6 [EH]	16 [EH] ([Goldston-Pintz- Yildirim 룹])
May 14 2013	1/1,168 (Zhang ⊮)	3,500,000 (Zhang ⊮)	70,000,000 (Zhang 준)
May 21			63,374,611 (Lewko 🗗)
May 28			59,874,594 (Trudgian 🗗)
May 30			59,470,640 (Morrison &) 58,885,998? (Tao &) 59,093,364 (Morrison &) 57,554,086 (Morrison &)
May 31		2,947,442 (Morrison 량) 2,618,607 (Morrison 량)	48,112,378 (Morrison 률) 42,543,038 (Morrison 률) 42,342,946 (Morrison 률)
Jun 1			42,342,924 (Tao 🗗)
Jun 2		866,605 (Morrison 🗗)	13,008,612 (Morrison 🗗)

Enrique Treviño

Prime gaps: a breakthrough in number theory

Polymath8 Progress

Jun 3 Jun 4	1/1,040? (v08ltu ∰) 1/224?? (v08ltu ∰) 1/240?? (v08ltu ∰)	341,640 (Morrison 🗗)	4,982,086 (Morrison 단) 4,802,222 (Morrison 단) 4,801,744 (Sutherland 단) 4,788,240 (Sutherland 단)	
Jun 5		34,429? (Paldi 로/v08ltu 문) 34,429? (Tao 로/v08ltu 문 /Harcos 로?)	4,725,021 (Elsholtz @) 4,717,560 (Sutherland @) 397,110? (Sutherland @) 4,656,298 (Sutherland @) 389,922 (Sutherland @) 388,310 (Sutherland @) 388,284 (Castryck @) 388,188 @ (Sutherland @) 388,188 @ (Sutherland @) 387,982 (Castryck @) 387,974 (Castryck @)	
Jun 6	(1/488,3/9272) (Pintz ළ) 4/562 (Pintz ළ), Tao ළි)	60,000± (Pintz ⊮) 52,295± (Peake ⊮)	387,960 (Angelveit 문) 387,910 문 (Sutherland 문) 387,904 (Angeltveit 문) 387,814 문 (Sutherland 문) 387,766 문 (Sutherland 문)	

Enrique Treviño

Prime gaps: a breakthrough in number theory

Polymath8 Progress

Polymath8 Progress

	Envirue Travião		مالا برم ما معرد من من مارم رزم برماند ا مرمد	
	E E			1 - 1
Jul 10	7/600? (Tao 🛃)			(E)
Jul 5	$(93+\frac{1}{3})\varpi+(26+\frac{2}{3})\delta<1$ (Tao (2)	720 (xfxie d/Harcos d/)	5,414 & (Engelsma &)	
Jul 1	$(93 + \frac{1}{3})\varpi + (26 + \frac{2}{3})\delta < 1^{?}$	873? (Hannes &) 8 72? (xfxie &)	6,712? & (Sutherland &) 6,696? & (Engelsma &)	
Jun 27	$108 arpi + 30 \delta < 1$? (Tao 2)	902? (Hannes 🗗)	6,966 虚? (Engelsma 률)	
Jun 26	$\begin{array}{l} 116 \varpi + 25.5 \delta < 1 ? \text{ (Nielsen IP)} \\ (112 + \frac{4}{7}) \varpi + (27 + \frac{6}{7}) \delta < 1 ? \\ \text{(Tao IP)} \end{array}$	962? (Hannes 🗗)	7,470 딸? (Engelsma 딸)	
Jun 25	$116 arpi + 30 \delta < 1$? (Fouvry-Kowalski- Michel-Nelson @/Tao @)	1,346? (Hannes 삶) 502?? (Trevino 삶) 1,007? (Hannes 삶)	10,876 윤? (Engelsma 윤) 3,612 ৫?? (Engelsma ৫) 7,860 윤? (Engelsma 윤)	
Jun 24	$\begin{array}{l} (134+\frac{2}{3})\varpi+28\delta\leq 1? \text{ (volitu e?)} \\ 140\varpi+32\delta<1? \text{ (Tao e?)} \\ \text{H8872} \text{ (Tao e?)} \\ \text{H7472} \text{ (Tao e?)} \\ \end{array}$	1,268? (v08ltu 🗗)	10,206? 虚 (Engelsma 虚)	

Enrique Treviño

Prime gaps: a breakthrough in number theory

Polymath8 Results

Polymath8 was able to get the following results:

- $\eta \leq 7/300$ (improving Zhang's result of $\eta \leq 1/584$)
- *k* = 632 (improving from 3500000)
- $\liminf_{n \to \infty} d_n \leq 4680$ (improving from 70 000 000).

ヘロト ヘアト ヘビト ヘビト

Maynard and Polymath8b

In November of 2013, Maynard, a postdoc at U. Montreal came out with a different proof of the bounded small gaps. A proof that does not require an improvement on Bombieri-Vinogradov:

Theorem (Maynard)

 $\liminf_{n\to\infty} d_n \leq 600.$

Furthermore if EH is true for any $\eta < 1/2$, then

 $\liminf_{n\to\infty} d_n \leq 12.$

ヘロト ヘ戸ト ヘヨト ヘヨト

Polymath8b

Polymath8 joined Maynard and they are improving his result. The latest results (updated March 1, 2014) are:

Theorem (Polymath8b)

 $\liminf_{n\to\infty} d_n \leq 252.$

Furthermore if EH is true for any $\eta < 1/2$, then

 $\liminf_{n\to\infty} d_n \leq 6.$

The 252 might go down a bit more but the 6 is staying put. The famous sieve parity barrier is preventing any improvement there.

ヘロト 人間 ト ヘヨト ヘヨト