On a sequence related to the factoradic representation of an integer

Maximiliano Sánchez Garza
Facultad de Ciencias Físico Matemáticas
Universidad Autónoma de Nuevo León
Av. Universidad, Ciudad Universitaria
San Nicolás de los Garza, Nuevo León, México, 66451
maxsanchez1312@gmail.com
Enrique Treviño
Mathematics Department Lake Forest College
555 N. Sheridan, Lake Forest, IL, USA, 60045
trevino@lakeforest.edu

Abstract

For a positive integer r, define j_{r} to be the smallest positive integer n satisfying $n!>n^{r-1}$. In this paper we prove $j_{r+1} \in\left\{j_{r}+1, j_{r}+2\right\}$, which leads us to explore the set of positive integers r for which $j_{r+1}=j_{r}+2$. We prove this set has the same density as the prime numbers. The sequence j_{r} was introduced by Carlson, Goedhart, and Harris in their work on factoradic happy numbers, and we prove some properties of j_{r} that lead to an improvement on a theorem of theirs.

1 Introduction

Let r be a positive integer and define j_{r} to be the smallest positive integer n satisfying

$$
\begin{equation*}
n!>n^{r-1} \tag{1}
\end{equation*}
$$

The first 20 values of j_{r} (A230319 in the On-line Encyclopedia of Integer Sequences [9]) are

$$
\begin{equation*}
\{2,3,4,6,7,8,10,11,12,14,15,16,18,19,20,22,23,24,25,27\} \tag{2}
\end{equation*}
$$

The sequence j_{r} made an appearance in work by Carlson, Goedhart, and Harris [2] on factoradic happy numbers. Our main goal in this paper is to prove some properties of j_{r} to be able to improve some of their results.

To get a better background, we need to define happy numbers ($\mathbf{A 0 0 7 7 7 0}^{\text {) and factoradic }}$ expansion. Let n be a positive integer and $S_{2}(n)$ be the sum of the squares of its decimal digits. Consider the sequence of iterates of S_{2} on n, i.e., $n, S_{2}(n), S_{2}^{2}(n), \ldots$. It is well known [7, pp. 74, 83-84] that eventually all the terms in the sequence are 1 or eventually the sequence becomes periodic with the cycle

$$
4 \rightarrow 16 \rightarrow 37 \rightarrow 58 \rightarrow 89 \rightarrow 145 \rightarrow 42 \rightarrow 20 \rightarrow 4
$$

If the sequence reaches 1 , we say n is happy. Many generalizations of happy numbers have been studied. For example, one can allow to change the base to $b \geq 2$ instead of 10 , and one can replace sum of squares of digits, with the sum of r-th powers of the digits for some integer $r \geq 1$. Let $S_{r, b}(n)$ be the sum of r-th powers of the digits of n when n is written in base b. In depth analysis of the cases $r \in\{2,3\}, b \in\{2,3, \ldots, 10\}$ has been done by Grundman and Teeple [4]. The techniques developed by Grundman and Teeple [4] can easily be used to study other choices of r and b. Another generalization is to allow the base b to be a negative number. This has been done by Grundman and Harris [6] for $-2 \geq b \geq-10$ and $r=2$. The authors also study in what cases there exist consecutive b-happy numbers in an arithmetic progression, generalizing work of El-Sedy and Siksek [3] (who do this for happy numbers) and the work of Grundman and Teeple [5] (who do this for b-happy r-power happy numbers). Bland, Cramer, de Castro, Domini, Edgar, Johnson, Klee, Koblitz, and Sundaresan [1] addressed a series of questions regarding a generalization of happy numbers to the fractional base 3/2, and Treviño and Zhylinski [10] addressed other fractional bases.

Every positive integer n can be written uniquely in the form

$$
n=\sum_{i=1}^{k} a_{i} \cdot i!,
$$

for some positive integer k satisfying $1 \leq a_{k} \leq k$, and $0 \leq a_{i} \leq i$ for $1 \leq i \leq k-1$. We call this the factoradic expansion of n. We will use the notation $n=\left(a_{k} a_{k-1} \cdots a_{1}\right)$! to express a number written in its factoradic expansion. For example, $8=110$! because $8=0 \cdot 1!+1 \cdot 2!+1 \cdot 3$!. Carlson, Goedhart, and Harris [2] generalized the concept of happy numbers to factoradic expansions as follows: let $S_{r,!}(n)$ be the sum of the r-th powers of the factoradic digits of a number n, then a positive number n is an r-power factoradic happy number if there exists an integer k such that $S_{r,!}^{k}(n)=1$ (the k-iteration of $S_{r,!}$ is 1). Their main theorem is that for $r \in\{1,2,3,4\}$, there exist arbitrarily long sequences of consecutive r-power factoradic happy numbers.

When studying happy numbers, regardless of the setting, it is important to show that the relevant happy function $S\left(S=S_{r, b}\right.$ or $\left.S=S_{r,!}\right)$ satisfies $S(n)<n$ for all $n>N$, for some integer N. One of the difficulties of the factoradic case is the bound for N is less easy to get that in the other happy number generalizations. Carlson, Goedhart, and Harris [2, Theorem 10] proved that for $2 \leq r \leq 30$, they can choose $N=M_{r}=\sum_{i=1}^{j_{r}} i \cdot i!=\left(j_{r}+1\right)$! -1 . Our main motivation to study j_{r} is to be able to prove this result for all r, i.e., to prove

Theorem 1. Let r be a positive integer. Write n in its factoradic expansion as $n=\sum_{i=1}^{k} a_{i} i$! with $1 \leq a_{k} \leq k$, and $0 \leq a_{i} \leq i$ for $i \in\{1,2, \ldots, k-1\}$. Let

$$
S_{r,!}(n)=\sum_{i=1}^{k} a_{i}^{r}
$$

Then for $n \geq\left(j_{r}+1\right)$!,

$$
S_{r,!}(n)<n .
$$

In our quest to prove the above theorem, we will need to study properties of the sequence j_{r}. In Section 2 we will prove some properties of j_{r} that study how the sequence grows. For example, we prove that $j_{r+1}-j_{r} \in\{1,2\}$. We also prove that the number of positive integers $r \leq x$ for which $j_{r+1}-j_{r}=2$ is asymptotic to $x / \log x$. Inspired by this, we say r is a j-prime if $j_{r+1}-j_{r}=2$. In Section 3, we will prove some lemmas that are necessary for our proof of Theorem 1, in particular we have a nice upper bound for sums of powers. Finally, in Section 4, we prove Theorem 1.

2 Studying the sequence j_{r}

For the purposes of proving Theorem 1, we need an upper bound on j_{r}. The following proposition is the main result from this section we will need.

Proposition 1. Let $\varepsilon>0$ be a real number. Then there exists M such that, for integers $r>M$, we have that $j_{r}<(1+\varepsilon) r$.

Proof. It is enough to prove that there exists an M such that, for $r>M$,

$$
\log (\lfloor(1+\varepsilon) r\rfloor!)>(r-1) \log \lfloor(1+\varepsilon) r\rfloor .
$$

By expanding log as a sum we have

$$
\log (\lfloor(1+\varepsilon) r\rfloor!)>\int_{1}^{\lfloor(1+\varepsilon) r\rfloor} \log t \mathrm{~d} t=\lfloor(1+\varepsilon) r\rfloor \log \lfloor(1+\varepsilon) r\rfloor-\lfloor(1+\varepsilon) r\rfloor+1
$$

Now, we want to show that there exists M such that, for $r>M$,

$$
\lfloor(1+\varepsilon) r\rfloor \log \lfloor(1+\varepsilon) r\rfloor-\lfloor(1+\varepsilon) r\rfloor+1>(r-1) \log \lfloor(1+\varepsilon) r\rfloor,
$$

which is equivalent to

$$
\log \lfloor(1+\varepsilon) r\rfloor>\frac{\lfloor(1+\varepsilon) r\rfloor-1}{\lfloor(1+\varepsilon) r\rfloor-r+1}
$$

Since $\lfloor(1+\varepsilon) r\rfloor>(1+\varepsilon) r-1$, then

$$
\log \lfloor(1+\varepsilon) r\rfloor>\log ((1+\varepsilon) r-1)
$$

and

$$
\frac{\lfloor(1+\varepsilon) r\rfloor-1}{\lfloor(1+\varepsilon) r\rfloor-r+1}=1+\frac{r-2}{\lfloor(1+\varepsilon) r\rfloor-r+1}<1+\frac{r-2}{\varepsilon r} .
$$

If we find an M such that, for $r>M$, we have

$$
\log ((1+\varepsilon) r-1)>1+\frac{r-2}{\varepsilon r}
$$

we would finish. Note that

$$
\lim _{r \rightarrow \infty} \log ((1+\varepsilon) r-1)=\infty \quad \text { and } \quad \lim _{r \rightarrow \infty}\left(1+\frac{r-2}{\varepsilon r}\right)=1+\frac{1}{\varepsilon}
$$

since $\varepsilon>0$. This clearly implies the existence of the desired M.
Remark 1. Given ε as in Proposition 1, we can take M to be

$$
M=\left\lfloor\frac{e^{1+\frac{1}{\varepsilon}}+1}{1+\varepsilon}\right\rfloor .
$$

Then, for $r>M$, we have that $r>\frac{e^{1+\frac{1}{\varepsilon}}+1}{1+\varepsilon}$. Thus,

$$
\log ((1+\varepsilon) r-1)>1+\frac{1}{\varepsilon}>1+\frac{1}{\varepsilon}-\frac{2}{\varepsilon r}=1+\frac{r-2}{\varepsilon r}
$$

where the last inequality holds since $\varepsilon>0$.
The following theorem provides an asymptotic for j_{r} that improves the upper bound from Proposition 1 and provides a strong lower bound. We will not need this result to prove our main theorem, but the result might be of independent interest.

Theorem 2. For a positive integer r, there exists a real number θ_{r} such that

$$
j_{r}=r+\frac{r}{\log r}+\theta_{r}\left(\frac{r}{\log r}\right)
$$

with $\theta_{r} \rightarrow 0$ as $r \rightarrow \infty$.
Proof. We will first prove the upper bound. Let $\varepsilon>0$ be a real number, we will show for large enough r we have

$$
j_{r}<r+\frac{(1+\varepsilon) r}{\log r}
$$

It suffices to prove that for large enough r,

$$
\begin{equation*}
\sum_{i=1}^{r+\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor} \log i>(r-1) \log \left(r+\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor\right) . \tag{3}
\end{equation*}
$$

Let $n=r+\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor$. We can bound the left side of (3) using the following explicit version of the lower bound in Stirling's formula [8], which is valid for every positive integer n :

$$
\begin{equation*}
\sum_{i=1}^{n} \log i>\frac{1}{2} \log (2 \pi)+\left(n+\frac{1}{2}\right) \log n-n+\frac{1}{12 n+1} . \tag{4}
\end{equation*}
$$

Applying (4) to (3), it suffices to show

$$
\log n>1+\frac{r-\frac{3}{2}}{\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor+\frac{3}{2}}-\frac{\log (2 \pi)}{2\left(\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor+\frac{3}{2}\right)}-\frac{1}{(12 n+1)\left(\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor+\frac{3}{2}\right)} .
$$

Since $\frac{(1+\varepsilon) r}{\log r} \geq\left\lfloor\frac{(1+\varepsilon) r}{\log r}\right\rfloor>\frac{(1+\varepsilon) r}{\log r}-1$, we need only prove

$$
\log \left(r+\frac{(1+\varepsilon) r}{\log r}-1\right)>1+\left(\frac{1}{1+\varepsilon}\right) \log r .
$$

But the left side is greater than $\log r$ which is larger than $1+\frac{1}{1+\varepsilon} \log r$ for large enough r.
For the lower bound, we will prove that for large enough r,

$$
j_{r}>r+\frac{r}{\log r} .
$$

It suffices to prove that for large enough r,

$$
\begin{equation*}
\sum_{i=1}^{r+\left\lfloor\frac{r}{\log r}\right\rfloor} \log i \leq(r-1) \log \left(r+\left\lfloor\frac{r}{\log r}\right\rfloor\right) \tag{5}
\end{equation*}
$$

Let $n=r+\left\lfloor\frac{r}{\log r}\right\rfloor$. We can bound the left side of (5) using the following explicit version of the upper bound in Stirling's formula [8], which is valid for every positive integer n :

$$
\begin{equation*}
\sum_{i=1}^{n} \log i<\frac{1}{2} \log (2 \pi)+\left(n+\frac{1}{2}\right) \log n-n+\frac{1}{12 n} \tag{6}
\end{equation*}
$$

Applying (6) to (5), we need only show

$$
\log n \leq 1+\frac{r-\frac{3}{2}}{\left\lfloor\frac{r}{\log r}\right\rfloor+\frac{3}{2}}-\frac{\log (2 \pi)}{2\left(\left\lfloor\frac{r}{\log r}\right\rfloor+\frac{3}{2}\right)}-\frac{1}{12\left(r+\left\lfloor\frac{r}{\log r}\right\rfloor\right)\left(\left\lfloor\frac{r}{\log r}\right\rfloor+\frac{3}{2}\right)}
$$

Since $\frac{r}{\log r} \geq\left\lfloor\frac{r}{\log r}\right\rfloor>\frac{r}{\log r}-1$, letting $x=r+\frac{r}{\log r}$, we want to show that for large enough r,

$$
\log x \leq 1+\frac{r-\frac{3}{2}}{\frac{r}{\log r}+\frac{3}{2}}-\frac{\log (2 \pi)}{2\left(\frac{r}{\log r}+\frac{1}{2}\right)}-\frac{1}{12(x-1)\left(\frac{r}{\log r}+\frac{1}{2}\right)}
$$

or, after subtracting by $\log r$ on both sides,

$$
\log \left(1+\frac{1}{\log r}\right) \leq 1-\frac{3\left(\log ^{2} r+\log r\right)}{2 r+3 \log r}-\frac{\log (2 \pi)}{2\left(\frac{r}{\log r}+\frac{1}{2}\right)}-\frac{1}{12(x-1)\left(\frac{r}{\log r}+\frac{1}{2}\right)} .
$$

Note that the left side goes to 0 as $r \rightarrow \infty$ while the right side goes to 1 as $r \rightarrow \infty$. Therefore the inequality is true for large enough r.

In the interest of exploring j_{r} further, let's analyze the relationship between j_{r} and j_{r+1}.
Proposition 2. For all positive integers r, we have that $j_{r}+1 \leq j_{r+1} \leq j_{r}+2$.
Proof. It is easy to see that $j_{r+1}>j_{r}$. So, it suffices to prove that

$$
\left(j_{r}+2\right)!>\left(j_{r}+2\right)^{r} .
$$

Assume, for the sake of contradiction, that $\left(j_{r}+2\right)!\leq\left(j_{r}+2\right)^{r}$. Then,

$$
\begin{equation*}
\frac{1}{\left(j_{r}+2\right)!} \geq \frac{1}{\left(j_{r}+2\right)^{r}} \tag{7}
\end{equation*}
$$

Multiplying inequalities (1) and (7),

$$
\frac{j_{r}!}{\left(j_{r}+2\right)!}>\frac{j_{r}^{r-1}}{\left(j_{r}+2\right)^{r}}
$$

It follows that,

$$
\frac{1}{j_{r}+1}>\frac{j_{r}^{r-1}}{\left(j_{r}+2\right)^{r-1}}=\left(\frac{j_{r}}{j_{r}+2}\right)^{r-1}
$$

which implies

$$
\begin{equation*}
\left(1+\frac{2}{j_{r}}\right)^{r-1}>j_{r}+1 \tag{8}
\end{equation*}
$$

Since $r^{r-1} \geq r(r-1) \cdots(2)=r$!, we know $j_{r} \geq r$. Using this in (8),

$$
\left(1+\frac{2}{r}\right)^{r-1} \geq\left(1+\frac{2}{j_{r}}\right)^{r-1}>j_{r}+1 \geq r+1
$$

Therefore

$$
\begin{equation*}
\left(1+\frac{2}{r}\right)^{r-1}>r+1 \tag{9}
\end{equation*}
$$

But $\left(1+\frac{2}{r}\right)^{r-1} \leq e^{2}<8$. This contradicts (9) for $r \geq 7$. We can use (2) to confirm that (9) is not satisfied for $1 \leq r \leq 6$. Thus (9) fails for $r \geq 1$. The result follows.

Therefore, for some positive integers r we have $j_{r+1}=j_{r}+1$ and for others we have $j_{r+1}=j_{r}+2$. Let S be the set of positive integers such that $j_{r+1}=j_{r}+2$. That is

$$
\begin{equation*}
S=\left\{r \in \mathbb{N} \mid j_{r+1}=j_{r}+2\right\} \tag{10}
\end{equation*}
$$

The first few values in S can be easily determined from (2) to be $3,6,9,12,15,19$. This is sequence A336803. From Theorem 2 and Proposition 2 we can prove the following theorem which inspired us to name the elements of S as j-primes.

Theorem 3. For a positive real number x, let $S(x)=\left\{r \leq x \mid j_{r+1}=j_{r}+2\right\}$. Then

$$
S(x) \sim \frac{x}{\log x} .
$$

Proof. From Proposition 2 we know $j_{r} \in\left\{j_{r-1}+1, j_{r-1}+2\right\}$. Therefore

$$
j_{r}=j_{1}+r-1+\sum_{\substack{i \in S \\ i \leq r}} 1=r+1+S(r)
$$

From Theorem 2 we have $j_{r}-r \sim \frac{r}{\log r}$. Hence $S(r) \sim \frac{r}{\log r}$.

3 Some useful lemmas

We are interested in the sum of the first $n=j_{r} r$-powers. There is an easy way to get a bound that works for all n :

$$
\begin{equation*}
\sum_{i=1}^{n} i^{r} \leq \int_{1}^{n+1} t^{r} \mathrm{~d} t=\frac{(n+1)^{r+1}-1}{r+1} \tag{11}
\end{equation*}
$$

For large n, (11) is great, but for n close to r, which is more relevant when $n=j_{r}$, we will need a tighter bound. First, we recall some known properties of the Bernoulli numbers (A027641), where we take $B_{1}=\frac{1}{2}$ instead of the usual $B_{1}=-\frac{1}{2}$ to simplify (14).

- For $k>0, B_{k}<0$ if and only if $k \equiv 0(\bmod 4)$.
- We have

$$
\begin{equation*}
\sum_{k=0}^{\infty} \frac{B_{k}}{k!}=\frac{e}{e-1} \tag{12}
\end{equation*}
$$

- For $k>0$, we have

$$
\begin{equation*}
B_{2 k}=\frac{(-1)^{k+1} 2(2 k)!}{(2 \pi)^{2 k}} \zeta(2 k) \tag{13}
\end{equation*}
$$

- $B_{2 k+1}=0$ for $k \geq 1$.
- (Bernoulli's formula) For positive integers n and r, we have

$$
\begin{equation*}
\sum_{i=1}^{n} i^{r}=\frac{1}{r+1} \sum_{k=0}^{r}\binom{r+1}{k} B_{k} n^{r+1-k} \tag{14}
\end{equation*}
$$

Lemma 1. Let $r \geq 2$ be an integer. Then, for an integer $n \geq r+1$,

$$
\sum_{i=1}^{n} i^{r} \leq \frac{C n^{r+1}}{r+1}
$$

where $C=\frac{e}{e-1}+\frac{\pi^{4}}{45\left(16 \pi^{4}-1\right)}=1.583 \ldots$..
Proof. For $n \geq r+1$, observe that $\binom{r+1}{k} \leq \frac{(r+1)^{k}}{k!} \leq \frac{n^{k}}{k!}$. Using that $B_{2 k}<0$ for even $k \geq 1$ and $B_{k}=0$ for odd $k>1$, by Bernoulli's formula (14) we have

$$
\sum_{i=1}^{n} i^{r} \leq \frac{1}{r+1}\left(1+\sum_{\substack{1 \leq k \leq r \\ k \not \equiv 0(\bmod 4)}} \frac{n^{k}}{k!} B_{k} n^{r+1-k}\right) \leq \frac{n^{r+1}}{r+1}\left(1+\sum_{\substack{1 \leq k \leq r \\ k \not \equiv 0(\bmod 4)}} \frac{B_{k}}{k!}\right)
$$

Now, using (12), (13), and using $\zeta(4 k) \leq \zeta(4)=\frac{\pi^{4}}{90}$, we have

$$
\begin{aligned}
1+\sum_{\substack{1 \leq k \leq r \\
k \not \equiv 0(\bmod 4)}} \frac{B_{k}}{k!} & \leq \sum_{k=0}^{\infty} \frac{B_{k}}{k!}-\sum_{k=1}^{\infty} \frac{B_{4 k}}{(4 k)!} \\
& =\frac{e}{e-1}+2 \sum_{k=1}^{\infty} \frac{1}{(2 \pi)^{4 k}} \zeta(4 k) \\
& \leq \frac{e}{e-1}+2 \zeta(4) \frac{1}{(2 \pi)^{4}\left(1-\frac{1}{(2 \pi)^{4}}\right)} \\
& =\frac{e}{e-1}+\frac{\pi^{4}}{45\left(16 \pi^{4}-1\right)} .
\end{aligned}
$$

Therefore, for $n \geq r+1$,

$$
\sum_{i=1}^{n} i^{r} \leq C \frac{n^{r+1}}{r+1}
$$

where $C=\frac{e}{e-1}+\frac{\pi^{4}}{45\left(16 \pi^{4}-1\right)}$, as desired.
What follows is a simple inequality we will need to use to prove our main theorem.
Lemma 2. Let $0<x<r$ be a real number. Then, for all integers $r \geq 1$, we have that

$$
\left(1-\frac{x}{r}\right)^{r}<e^{-x}
$$

Proof. Using the Taylor series expansion of $\log (1-x / r)$, we have that

$$
r \log \left(1-\frac{x}{r}\right)=-r\left(\frac{x}{r}+\frac{1}{2}\left(\frac{x}{r}\right)^{2}+\frac{1}{3}\left(\frac{x}{r}\right)^{3}+\cdots\right)=-x-\frac{x^{2}}{2 r}-\frac{x^{3}}{3 r^{2}}-\cdots<-x .
$$

Lemma 3. Let $0<\varepsilon<2$. Then there exists a positive integer M such that, for all integers $r>M$, we have that

$$
\left(1-\frac{1}{j_{r}}\right)^{r+1}<e^{-1+\varepsilon} .
$$

Proof. Let $\varepsilon_{1}>0$ be a real number. First, by Proposition 1, there exists M_{1} positive integer such that, for $r>M_{1}$, we have that $j_{r}<\left(1+\varepsilon_{1}\right) r$. Then, for $r>M_{1}$, we have

$$
\begin{equation*}
\left(1-\frac{1}{j_{r}}\right)^{r+1}<\left(1-\frac{1}{\left(1+\varepsilon_{1}\right) r}\right)^{r+1} \tag{15}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(1-\frac{1}{\left(1+\varepsilon_{1}\right) r}\right)^{r+1}=e^{-\frac{1}{1+\varepsilon_{1}}} \tag{16}
\end{equation*}
$$

On the other hand, we know that $j_{r}>r$ because $j_{1}>1$ and $j_{r+1} \geq j_{r}+1$. It follows that

$$
\begin{equation*}
\left(1-\frac{1}{j_{r}}\right)^{r+1}>\left(1-\frac{1}{r}\right)^{r+1} \tag{17}
\end{equation*}
$$

and we have that

$$
\begin{equation*}
\lim _{r \rightarrow \infty}\left(1-\frac{1}{r}\right)^{r+1}=e^{-1} \tag{18}
\end{equation*}
$$

Since (15) and (16) hold for all $\varepsilon_{1}>0$, from (15), (16), (17), and (18) we conclude that

$$
\lim _{r \rightarrow \infty}\left(1-\frac{1}{j_{r}}\right)^{r+1}=e^{-1}
$$

Thus, there exists M such that, for $r>M$, we have that

$$
\left(1-\frac{1}{j_{r}}\right)^{r+1}<e^{-1+\varepsilon}
$$

as desired.
Remark 2. From Remark 1, we know that

$$
j_{r}<\left(\frac{1}{1-\frac{\varepsilon}{2}}\right) r
$$

for $r>\left(e^{\frac{2}{\varepsilon}}+1\right)\left(1-\frac{\varepsilon}{2}\right)$. Then,

$$
\left(1-\frac{1}{j_{r}}\right)^{r+1}<\left(1-\frac{1-\frac{\varepsilon}{2}}{r}\right)^{r+1}<\left(1-\frac{1-\frac{\varepsilon}{2}}{r}\right)^{r}
$$

where

$$
\left(1-\frac{1-\frac{\varepsilon}{2}}{r}\right)^{r}<e^{-1+\varepsilon}
$$

for all integers $r \geq 1$ (by Lemma 2 with $x=1-\varepsilon$). Therefore, we can take M in Lemma 3 as

$$
M=\left\lfloor\left(e^{\frac{2}{\varepsilon}}+1\right)\left(1-\frac{\varepsilon}{2}\right)\right\rfloor .
$$

4 Proof of Theorem 1

Carlson, Goedhart, and Harris [2, Theorem 10] reduced the proof of Theorem 1 to showing the inequality ${ }^{1}$

$$
\begin{equation*}
\left(j_{r}+1\right)!-\left(j_{r}+1\right)^{r-1}+j_{r}!-1-\sum_{i=1}^{j_{r}-1} i^{r}>0 \tag{19}
\end{equation*}
$$

They proved it via computation [2, Table 1] for $2 \leq r \leq 30$. We will prove (19) works for all positive integers r in the next proposition.
Proposition 3. Let r be a positive integer. Then

$$
\left(j_{r}+1\right)!-\left(j_{r}+1\right)^{r-1}+j_{r}!-1-\sum_{i=1}^{j_{r}-1} i^{r}>0 .
$$

Proof. Let $C=\frac{e}{e-1}+\frac{\pi^{4}}{45\left(16 \pi^{4}-1\right)}$ and let L_{r} be the left side of (19). We want to show $L_{r}>0$. We know that $j_{r}>r$. Also, as observed by Carlson, Goedhart, and Harris [2], we have that

$$
\left(j_{r}+1\right)^{r-1}=j_{r}^{r-1}\left(1+\frac{1}{j_{r}}\right)^{r-1}<j_{r}^{r-1}\left(1+\frac{1}{r}\right)^{r}<3 j_{r}^{r-1}
$$

From this and from Lemma 1, we have that for $r \geq 2$,

$$
\begin{aligned}
L_{r} & >j_{r}!\left(j_{r}+2\right)-3 j_{r}^{r-1}-1-\frac{C\left(j_{r}-1\right)^{r+1}}{r+1} \\
& =j_{r}!\left(j_{r}+2\right)-3 j_{r}^{r-1}-1-j_{r}^{r-1}\left(\frac{j_{r}^{2}}{r+1}\right)\left(C\left(\frac{j_{r}-1}{j_{r}}\right)^{r+1}\right) \\
& >j_{r}^{r-1}\left(r-1-\left(\frac{j_{r}^{2}}{r+1}\right)\left(C\left(1-\frac{1}{j_{r}}\right)^{r+1}\right)\right)-1 .
\end{aligned}
$$

[^0]Let $0<\varepsilon<1-\log (C)$ be a real number. By Lemma 3, there exists a positive integer M_{1} such that, for $r>M_{1}$,

$$
\left(1-\frac{1}{j_{r}}\right)^{r+1}<e^{-1+\varepsilon}
$$

which leads to

$$
C\left(1-\frac{1}{j_{r}}\right)^{r+1}<C e^{-1+\varepsilon}
$$

It follows that, for $r>\max \left\{2, M_{1}\right\}$,

$$
\begin{aligned}
L_{r} & >j_{r}^{r-1}\left(r-1-C e^{-1+\varepsilon}\left(\frac{j_{r}^{2}}{r+1}\right)\right)-1 \\
& =C e^{-1+\varepsilon} j_{r}^{r-1}\left(\left(\frac{1}{C e^{-1+\varepsilon}}\right)(r-1)-\frac{j_{r}^{2}}{r+1}\right)-1
\end{aligned}
$$

Let $k>1$ be a constant such that $k^{2}<\frac{1}{C e^{-1+\varepsilon}}$. By Proposition 1, there exists a positive integer M_{2} such that, for $r>M_{2}$, we have that

$$
j_{r}<k(r+1)
$$

Then, for $r>\max \left\{2, M_{1}, M_{2}\right\}$,

$$
L_{r}>C e^{-1+\varepsilon} j_{r}^{r-1}\left(\left(\frac{1}{C e^{-1+\varepsilon}}-k^{2}\right) r-\frac{1}{C e^{-1+\varepsilon}}-k^{2}\right)-1
$$

which is greater than -1 whenever $r>\frac{1+C k^{2} e^{-1+\varepsilon}}{1-C k^{2} e^{-1+\varepsilon}}$. Since the expression on the left is an integer, we conclude the result for $r>\max \left\{2, M_{1}, M_{2},\left\lfloor\frac{1+C k^{2} e^{-1+\varepsilon}}{1-C k^{2} e^{-1+\varepsilon}}\right\rfloor\right\}$.

From Remarks 1 and 2 we know that we can choose M_{1}, M_{2} to be

$$
\begin{aligned}
& M_{1}=\left\lfloor\left(e^{\frac{2}{\varepsilon}}+1\right)\left(1-\frac{\varepsilon}{2}\right)\right\rfloor, \\
& M_{2}=\left\lfloor\frac{e^{1+\frac{1}{k-1}}+1}{k}-1\right\rfloor .
\end{aligned}
$$

The idea is to minimize the value of $\max \left\{2, M_{1}, M_{2},\left\lfloor\frac{1+C k^{2} e^{-1+\varepsilon}}{1-C k^{2} e^{-1+\varepsilon}}\right\rfloor\right\}$. Choosing $\varepsilon=0.26$ and $k=1.15$, we have that

$$
\max \left\{2, M_{1}, M_{2},\left\lfloor\frac{1+C k^{2} e^{-1+\varepsilon}}{1-C k^{2} e^{-1+\varepsilon}}\right\rfloor\right\}=\max \{2,1907,1857,2167\}=2167
$$

This proves the result for $r>2167$. The cases $r \leq 2167$ can be easily checked with a computer.

References

[1] A. Bland, Z. Cramer, P. de Castro, D. Domini, T. Edgar, D. Johnson, S. Klee, J. Koblitz, and R. Sundaresan, Happiness is integral but not rational, Math Horiz. 25 (2017), 8-11.
[2] J. Carlson, E. G. Goedhart, and P. E. Harris, Sequences of consecutive factoradic happy numbers, Rocky Mountain J. Math. 50 (2020), 1241-1252.
[3] E. El-Sedy and S. Siksek, On happy numbers, Rocky Mountain J. Math. 30 (2000), 565-570.
[4] H. G. Grundman and E. A. Teeple, Generalized happy numbers, Fibonacci Quart. 39 (2001), 462-466.
[5] H. G. Grundman and E. A. Teeple, Sequences of consecutive happy numbers, Rocky Mountain J. Math. 37 (2007), 1905-1916.
[6] H. G. Grundman and P. E. Harris, Sequences of consecutive happy numbers in negative bases, Fibonacci Quart. 56 (2018), 221-228.
[7] R. Honsberger, Ingenuity in Mathematics, New Mathematical Library, vol. 23, Random House, Inc., 1970.
[8] H. Robbins, A remark on Stirling's formula, Amer. Math. Monthly 62 (1955), 26-29.
[9] N. J. A. Sloane et al., The On-line Encyclopedia of Integer Sequences, 2021. Available at https://oeis.org.
[10] E. Treviño and M. Zhylinski, On generalizing happy numbers to fractional-base number systems, Involve 12 (2019), 1143-1151.

2010 Mathematics Subject Classification: Primary 11B83; Secondary 11N37, 11A67, 11B68. Keywords: happy factoradic number, asymptotic growth, sum of powers.
(Concerned with sequences A230319, $\underline{\text { A007770, }} \underline{\text { A336803, and A027641.) }}$

[^0]: ${ }^{1}$ they incorrectly omitted the " -1 " term from the inequality.

