A proof of a stronger Law of Sines using the Law of Cosines

Two very important theorems in geometry are the Law of Sines (LS) and the Law of Cosines (LC). Let A, B, C be the vertices of a triangle and let the lengths of the opposing sides be a, b, c, respectively. Suppose we call the angles of the triangle α, β, γ , where the angles are at the vertices A, B, C, respectively. Then LS states that

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)},\tag{1}$$

and LC states

 $a^2 = b^2 + c^2 - 2bc\cos(\alpha).$

In [2], the author gives a simple proof of LS using the LC on three side lengths and using some nice algebraic reasoning. Below we give a different proof of a slightly stronger version of LS using LC on only one side and using a few other simple geometric facts.¹

Theorem 1. Let R be the circumradius of $\triangle ABC$. Then

$$\frac{a}{\sin(\alpha)} = \frac{b}{\sin(\beta)} = \frac{c}{\sin(\gamma)} = 2R$$

Proof. We need only show that $\frac{a}{\sin(a)} = 2R$. As in Figure 1, let O be the circumcenter of $\triangle ABC$. Suppose $\alpha < 90^{\circ}$. Then $\measuredangle BOC = 2\alpha$. By the Law of Cosines on $\triangle OBC$ (using that OB = OC = R), we have

$$a^{2} = R^{2} + R^{2} - 2R^{2}\cos(2\alpha) = 2R^{2}(1 - (1 - 2\sin^{2}(\alpha))) = 4R^{2}(\sin(\alpha))^{2}.$$

Since $a, \sin(\alpha), R$ are all positive, then we can take square roots and conclude $\frac{a}{\sin(\alpha)} = 2R$. If $\alpha > 90^{\circ}$, then

Figure 1: Triangle ABC with circumcenter O and circumradius R.

O lands outside the triangle. So the law of cosines is now used with the angle $360^{\circ} - 2\alpha$ instead of 2α . But $\cos(2\alpha) = \cos(360 - 2\alpha)$, so the proof is still valid. In the case $\alpha = 90^{\circ 2}$, *O* is the midpoint of *BC*, so a = 2R. Since $\sin(90^{\circ}) = 1$, the statement $\frac{a}{\sin(\alpha)} = 2R$ follows.

¹We'll use that if an inscribed angle α opens an arc \widehat{BC} in a circle, then the central angle opening the arc \widehat{BC} is 2α . We will also use that $\cos(2\alpha) = \cos^2(\alpha) - \sin^2(\alpha) = 1 - 2\sin^2(\alpha)$.

 $^{^{2}}$ In [1], the author insists that proofs of LS should not omit the case of a right triangle.

References

- Alfred Brauer, Classroom Notes: The Proof of the Law of Sines, Amer. Math. Monthly 59 (1952), no. 5, 319. MR 1528145
- [2] Patrik Nystedt, A Proof of the Law of Sines Using the Law of Cosines, Math. Mag. 90 (2017), no. 3, 180–181. MR 3654857