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The trio of projects

@ On generalizing happy numbers to fractional base number
systems with Mikita Zhylinski, Lake Forest College.

@ On a sequence related to the factoradic representation of an
integer with Maximiliano Sanchez Garza, Universidad Autébnoma
de Nuevo Leon.

© Generalizing Parking Functions with Randomness with Melanie
Tian, Lake Forest College.
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Project 1

On generalizing happy numbers to fractional base number systems
with Mikita Zhylinski, Lake Forest College.
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Happy numbers

@ Let S(n) be the sum of the squares of the digits of n.
@ Consider iterating S on positive integers.

@ The number n, after enough iterations of S, eventually reaches 1
or it eventually reaches the cycle

4 —+16 —+ 37 —58 -89 — 145 — 42 — 20 — 4.

@ We call n happy if n eventually reaches 1 after enough iterations
of S.

@ 13 is happy since
13 - 10— 1.

@ Happy numbers are sequence A007770 in OEIS.
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Proof that iterations of S have two possibilities

@ If nhas m > 4 digits, then
S(n) <81m< 10™.
@ If n > 244 has 3 digits, then
S(n) <243 < n.

@ Therefore, for n > 244, S(n) < n.

@ We need only analyze what cycles are reached by positive
integers < 243. This can be checked with a computer.
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Some generalizations of happy numbers

@ Let Sg p(n) be the sum of the e-th powers of the base b digits of n.
For example
S35(13) =23 + 3% = 35.
@ Grundman and Teeple, in 2001, generalized the notion of happy
numbers to e-th power b-happy numbers for numbers that reach 1
after repeated iteration of Se .

@ Grundman and Teeple were able to find the cycles that can be
reached for Sg , when e € {2,3} and 2 < b < 10.
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TABLE 1. Fixed points and cycles of S, ,,2<b <10

Base | Fixed Points and Cycles

2 |1

3 11,12,22
224112

4 (1

5 [1,23,33
4312204

6 |1

32— 21 = 5 — 41 = 25 = 45 - 105 = 4232
7 11,13, 34, 44, 63

25495225112

16 — 52 — 41 — 23 = 16

8 |[1,24,64

45204

523121225

15 +32- 15

9 |1,45,55

58 — 108 — 72— 58

82 — 75 — 82

10 |1

4— 16— 37 — 58 — 89 — 145 — 42 — 20 — 4
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More generalizations and other results

@ El-Sedy and Siksek, in 2000, proved there are arbitrarily long
sequences of consecutive happy numbers.

@ Grundman and Teeple generalized El-Sedy’s and Siksek’s result
to other bases and to other exponents.

@ Grundman and Harris generalized the result to negative bases.
(Yes, there is a way to represent numbers allowing for negative
bases).

@ Bland, Cramer, de Castro, Domini, Edgar, Johnson, Klee, Koblitz,
and Sundaresan, in 2017, generalized the concept of happy
numbers to fractional bases (but not the proof about arbitrarily
long sequences of consecutive fractional based happy numbers).
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Fractional Base

For any p/q with ged(p, @) = 1 and p > g, for every positive integer n,
there exist fractional digits ag, ay, . . ., ar satisfying 0 < a; < p for
ie{0,1,...,r—1}and 0 < ar < p such that

r I
n=>a <p> :
i=0 q
We will write

n=arar_18r—2...a2a14ape.
q

n | ninbase 3/2 n | ninbase 3/2
0 03 6 2103
_2 __ 2
1 13 7 2113
_2 __ 2
2 23 8 212,
_2 2
3 203 9 21003
__2 ___ 2
4 213 10 21013
__2 ___ 2
5 22, 11 2102,
2 2

Table: The first 12 non-neqative integers in the 3/2'base number system.
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Our research questions

Working with Mikita Zhylinski, we worked on the following questions
raised by Bland et. al.

@ Can we find the cycles reached by S, j, for different e-th powers
when p/q = 3/2?

@ Can we find the cycles reached by S, j, for different p/q when we
restrict to e = 27

© Are there positive integers n of arbitrarily large height?
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Answer to Question 1

e | Cycles n*
11(1),(2) 2
2 | (1),(5,8,9) 8
3 | (1),(9),(10), (17, 18) 32
4 | (1), (51),(52) 7
5 | (1), (131), (98, 99) 185
6 | (1), (197, 260, 387, 323, 263, 450), (324, 131, 259) 419
7 | (1), (771,516, 643, 518) 1211
8 (1), (1539, 775, 1284), (1287, 1794, 1796, 2052), (1032), (1033) 2723
9 | (1), (2566), (2565) 6557
10 | (1), (10247) 13118
11 | (1), (14342, 16388, 14344), (14341), (14340) 27968
12 | (1), (28678), (28677) 62933

Table: Cycles reached when iterating S, 5, and the value of n* for different
values of e.
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Answer to Question 2

p/q e=2 e=23 e=4
(16, 6, 5, 4), (65), (163, 190, 73, 118, 64), (371, 276, 275, 274), (355, 130, 113),
5/2 | (32,24,29); (81), (80), (66), (17); (195, 353);
n* =39 n* = 239 n* = 1039
(772, 804, 454, 788, 950, 658, 934,
(34, 50), (25), (100, 38, 64, 102, 46), (101, 39), 1126, 1028, 1202, 868, 936, 390),
5/3 | (26), (59), (23), (127,107, 73, 135), (162), (193), | (1027, 1137, 1125),
(11), (10); (190, 166, 218), (199, 237); (1122, 994), (1299), (101), (100);
n* =59 n* = 284 n* = 1324
(1786, 1880, 1403, 1594, 1659, 2011,
(66, 55), (50), (311, 251, 247, 231, 371), 2075, 1579, 2057, 1947, 1688, 1229,
5/4 (58, 75, 49, 56, 67), (361), (417), ( 374), (360), (314), 1641, 1676, 1946, 1673, 1851, 1592,
(74, 83), (51); (424, 418, 436, 272, 328, 364); 1419, 1974, 2058, 2012, 2090);
n* =74 n* = 464 n* = 2639
(341, 591, 376, 143, 187, 216, (914, 2065, 1953, 1538, 2819, 2690, 2210,
352, 25, 280, 244, 469, 63, 1507, 1491, 2610, 1856, 1348, 1666, 259,
128, 44, 141, 161, 197, 73, 307, 1808, 2659, 3136, 1824),
7/2 | (25,52),(97); 467,377, 234, 182, 91), (1634, 1731, 994), (371, 34, 1313),
(35), (288, 343, 9, 16, 72), (130, 354, 289, 1938, 3265, 2930, 1474, 1570),
(36), (189), (190), (468); (451,195, 2177, 1554, 179, 513, 2034, 2530);
n* =97 n* =615 n* = 5417

Table: Cycles reached when iterating Se’g, and the value of n* for different
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For a number n, the height is the number of iterations of S, it takes to
reach a cycle.

Examples fore =2,b = 10:

@ The height of 13 is 2 since 13 — 10 — 1.
@ The height of 14 is 6 because

14 —-17 —- 50 — 25 - 29 — 85 — 89.
@ The height of 15 is 4 because

15—+26 —+68 — 100 — 1.
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Arbitrary Height

Let’s prove that for the happy function S; 19, the height of a number
can be arbitrarily large.

@ 14 has height 6.
@ The number

has height 7 since S(m) = 14.
@ Then the number with m 1’s has height 8 and so on.
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Arbitrary Height for Fractional Bases

Let p > q be positive integers with gcd(p,q) = 1, and let e and H be
positive integers. If g = 2 or e = 1, then there exists an integer n such
that the height of n is H.
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Sketch of the Proof

@ We will show that for k > 2¢, there is an even integer n such that
Se7p/2(n) =K.

@ Taking n = 2 we get that it’s true for 2°.

@ Assume there is an even m such that S, ;,/»(m) = k.

@ Let m = 2bc with b > 1 and ¢ odd. Write m in base p/2 as
m=arar_1---a1dap.

@ Then b
(g) m+1=aa_1---a180---01,
b—1

where there are b — 1 zero digits.

@ (p/2)’m+ 1 is even. Furthermore, since it has the same digits as
before with b — 1 zeroes added and one 1 added, the sum of the
e-th powers of the digits is k + 1.
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Project 2

On a sequence related to the factoradic representation of an integer

with Maximiliano Sanchez Garza, Universidad Auténoma de Nuevo
Ledn.
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Factoradic Representation

@ Every positive integer n can be written uniquely in the form

k
n=> a-i,
e

for some positive integer k satisfying 1 < ax < k,and0 < ag; </
for1 <i<k-—1.

@ We call this the factoradic expansion of n.

@ We will use the notation n = (axakx_1 - - - @)1 to express a number
written in its factoradic expansion.

@ For example, 8 =110, because 8 =0-1!1+1-21 +1 -3
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Factoradic Happy Numbers

@ Carlson, Goedhart, and Harris, in 2020, generalized the concept
of happy numbers to factoradic expansions as follows: let S, (n)
be the sum of the r-th powers of the factoradic digits of a number
n, then a positive number nis an r-power factoradic happy
number if there exists an integer k such that Sk (n) =1 (the
k-iteration of S, is 1).

@ Their main theorem is that for r € {1,2, 3,4}, there exist arbitrarily
long sequences of consecutive r-power factoradic happy numbers.
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Motivating Result

Let r be a positive integer and define j; to be the smallest positive
integer n satisfying

n>n-1

Theorem (Carlson, Goedhart, Harris, 2020)

Let r be a positive integer satisfying 2 < r < 30. Write n in its
factoradic expansion as n = ZL giil with1 < ay <k,and0<ag; <i
forie{1,2,...,k—1}. Let

k
Sri(n) = Za,f.
i=1
Then forn > (j + 1)1,
Sri(n) < n.

Enrique Trevifo (Lake Forest College) A trio of research projects with undergraduate 41



The sequence j;

Let r be a positive integer and define j; to be the smallest positive
integer n satisfying
nl>n—"

@ The first 20 values of j; in the On-line Encyclopedia of Integer
Sequences are
{2,3,4,6,7,8,10,11,12,14,15,16,18,19,20, 22, 23,24, 25, 27}.

@ Itis sequence A230319 in OEIS.
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Properties of j

Some properties of j, we proved:
@ jr1—jre{1,2}forallr.
@ Let e > 0 be areal number. Then there exists M such that, for
integers r > M, we have that j, < (1 4 ¢)r.

@ For a positive integer r, there exists a real number 6, such that

=rt—— 10 !
Jr= logr ' \logr)’

with 8, —- 0as r — oo.
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We know j,. 1 — jr € {1,2}. Let r be a j-prime if j, 1 — jy = 2.

LetJ(x) = {r < x|ris aj-prime}. Then

J(x)

~ ~ 7(X).
log x m(X)
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Sums of Powers

For the theorem we want to prove we need to control sums of powers.
There’s a beautiful classical theorem we will need

where By are the Bernoulli numbers with the convention that B = .
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Bernoulli numbers

@ Fork >0, Bk <0Oifandonly if Kk = 0 (mod 4).
@ We have

@ For kK > 0, we have

(—1)k+12(2k)!

Boy, =

¢(2k). (@)

@ By =0fork >1.
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A useful inequality

Letr > 2 be an integer. Then, for an integern>r+1,

n cn'+1
§ i" <

‘ r+1
i=1

WhereC:e%ﬁ—W:LSBS....

Note: The usual “straightforward” inequality is

zn:jf</n+1 tfdt:w
P ) r+1 ’
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Proof of Lemma

For n>r+ 1, observe that ("t") < ]

. 1 nk +1—k nt Bk
.r r-
Zlgr+1 T Z FBn K
i=1 1<k<r 1<k<r
k # 0 (mod 4) k # 0 (mod 4)
Now, using properties of Bernoulli numbers and that {(4k) < ((4) = &5, we have
Bk S Br  ~~ Bu
T W S Gk
1<k<r k=0 k=1
k # 0 (mod 4)
e =1
e 1
< g @)
(2r) (1 - (%)4)
4

e—1 " 45(16xt —1)
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Main Theorem

Theorem

Let r be a positive integer. Write n in its factoradic expansion as
n=>K, ail with1 < ax <k, and0<a <iforie{1,2... k-1}.
Let

k
Sra(n) = _al.
i=1

Then forn > (j, + 1)!,

Sri(n) < n.
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Generalizing Parking Functions with Randomness with Melanie Tian,
Lake Forest College.
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Parking Functions

@ Consider ncars Cy, Co, ..., C, that want to park in a parking lot
with parking spaces 1,2,..., nthat appear in order.

@ Each car C; has a parking preference «; € {1,2,...,n}.

@ The cars appear in order, if their preferred parking spot is not
taken, they take it, if the parking spot is taken, they move forward
until they find an empty spot. If they don’t find an empty spot, they
don’t park.

@ An n-tuple (v, ag, ..., ap) is said to be a parking function, if this
list of preferences allows every car to park under this algorithm.

@ For example (2,1,1,2) is a parking function while (4,3, 3, 1) is not.
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Counting parking functions

Theorem (Konheim, Weiss, 1966)
Given a positive integer n, The number of parking functions is

(n+ 1)1

| A\

Proof.
Imagine we add an n+ 1-th parking spot and we wrap-around, so a car
can move forward, take the n+ 1-th spot and if even that is taken, they
can come back to spot 1.

Under this process, everyone ends up parking and there would be one
empty parking spot. An n-tuple is a parking function if and only if the
empty parking slot is the n + 1-th slot. There are (n+ 1)" possible
tuples and there are n + 1 possible empty spots, so (n+ 1)"~" of them
are parking functions. O

v
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A variant with randomness

Suppose we change the parking algorithm as follows: If a preferred
parking spot is taken, then the car continues forward with probability p

and backwards with probability 1 — p.
@ For p=1/2, the tuple (2,1, 1,2) has probability 1/4 of having all
cars parked.
@ For p=1/2, the tuple (4,3, 3, 1) has probability 1/2 of having all
cars parked.
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A couple of theorems on this variant

The expected number of parking functions is

(n+ 1)1

Theorem

An n-tuple (o, . . ., an) has probability 1 of parking if and only if
{aq,a0,...,ap} ={1,2,...,n}. Furthermore, if

{aq,00,...,an} #{1,2,...,n}, then the probability of parking is
greater than 0.
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Naples parking

Consider the following variant, called Naples-parking:

@ If a caris parked in C;’s preferred spot, then C; will check if the
previous spot is taken, if not, he takes that spot, otherwise C;
continues forward.

A generalization is k-Naples parking.

@ If a caris parked in C;’s preferred spot, then C; will back up k
spots and move forward until it finds a spot (if a spot is available).
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Counting Naples parking functions

Theorem (Christensen, Harris, Jones, Loving, Ramos
Rodriguez, Rennie, Rojas Kirby, 2020)

If k, n are nonnegative integers with k < n, then the number Ny(n+ 1)
of k-Naples parking functions of length n+ 1 is counted recursively by

n

Ne(n+1)=3Y" (7) min((i + 1) + k, n+ 1)Ne(i)(n — i + 1)1,
i=0
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Variant introducing randomness

Suppose we consider k-Naples parking, but instead of a car moving
the k spaces backward automatically, they decide with probability p to
take k spaces back or just stay in the spot.
Some examples with k =1 and p=1/2.

@ The tuple (2,1,1,2) has probability 1 of parking.

@ The tuple (4,3, 3, 1) has probability 1/2 of parking.
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Probability for all preferences when n

Enrique Treviio (Lake Forest College)
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Preferonce T iz T3 T4 Ti21 7122 7723 7724
Probabilty T T T T T T T 7
Proforence RAEI] S HES T TTa T4 L] TiaA
Frobabilty 7 7 7 7 7 i3
Preference T2 278 275 L) N - W W
Probabilty T T T T EN I N I R
Preference 7231 232 7233 234 7241 212 243 Toa4
Probabilty T T T T T T 7 72
Torence SEII] [EH EE] EEIL) T3z i 7323 R
Babilty 7 T 7 7 T T T T
Preference | 1331 | 1332 T35 i) T3 T30 R T30
Probabil T T £ T2 T T 172 0
Preference AT iH 7413 i) Taz1 7422 7423 7424
Probabilty T T T T2 T T 72
Toron: SLEI] ) ] ) @A a3 L] Taas
Frobabilty 7 7 2 0 T2 T2 3 ©
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Probabilt 7 T T T T T
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Probabilty T T T T T T 7 72
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Prelerence | 2231 | 2232 | 223 | %o 72T 7227 7243 72T
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Preference 3T 33 33 [y L] L L] L
Probabilty T2 i) [ [ [ 0 0 0
Preference Ty a1z [iiES i [5E] w22 w23 T2
Probabilty T T T T2 T T 7 72
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Frobabilty 7 7 23 0 T2 T2 o
Preference il 7 275 2 ) [ N W
Probabilty T T T2 T 34 172 73
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Generalizing the recursion formula

Theorem (CHJLR-RRR-K, 2020)

If k, n are nonnegative integers with k < n, then the number Ni(n) of
k-Naples parking functions of length n is counted recursively by

n—1

> <n7 1>Nk(i)(n = i)' min((i +1) + k. n).

i=0

Let Ty p(n) be the expected number of parking preferences.

n—1

Tip(n) =" <”7 1) Tip()(n = )72+ 1+ pmin{k,n — i — 1})

i=0
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Do you see a Pattern?

p 0 /64 | 2/64 | 3/64 | 4/64 | 5/64 | 6/64 | 7/64
f(p) | 339472 | 1 136 T | 2194 | 1 209 1
p | 8/64 | 9/64 | 10/64 | 11/64 | 12/64 | 13/64 | 14/64 | 15/64
f(p) | 12466 | 1 140 1 | 3107 | 1 143 1
p | 16/64 | 17/64 | 18/64 | 19/64 | 20/64 | 21/64 | 22/64 | 23/64
f(p) | 40610 | 1 141 T | 1361 | 1 74 1
p | 24/64 | 25/64 | 26/64 | 27/64 | 28/64 | 29/64 | 30/64 | 31/64
f(p) | 14253 | 1 75 1 | 1589 | 1 148 1
p | 32/64 | 33/64 | 34/64 | 35/64 | 36/64 | 37/64 | 38/64 | 39/64
f(p) | 94792 | 1 30 T 1171 | 1 33 1
p | 40/64 | 41/64 | 42/64 | 43/64 | 44/64 | 45/64 | 46/64 | 47/64
f(p) | 4861 1 104 1 576 1 37 1
p | 48/64 | 49/64 | 50/64 | 51/64 | 52/64 | 53/64 | 54/64 | 55/64
f(p) | 35324 | 1 35 1 614 1 38 1
p | 56/64 | 57/64 | 58/64 | 59/64 | 60/64 | 61/64 | 62/64 | 63/64
f(p) | 6819 1 39 1 734 1 42 1

Table: Distribution of probability for n = 7, p for probability and f(p) for

number of

preferences of probabilit
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There is one and only one parking preference for which the probability
that every car parks is 2=}, where t € [1,272].

Theorem

The condition of having probability 2%_1, te€{0,1,...,2" 1} of success
all have at least 1 preference satisfying.

v
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Thank you

Thank you
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