(2.) Differentiating $\sqrt[4]{x+1}$:

$$
\begin{array}{rlrl}
f(x) & =\sqrt[4]{x+1}=(x+1)^{1 / 4} & f(0) & =1, \\
f^{\prime}(x) & =(1 / 4)(x+1)^{-3 / 4} & f^{\prime}(0)=\frac{1}{4}, \\
f^{\prime \prime}(x) & =(-3 / 4)(1 / 4)(x+1)^{-7 / 4}=(-3 / 16)(x+1)^{-7 / 4} & f^{\prime \prime}(0) & =-\frac{3}{16} \\
f^{\prime \prime \prime}(x) & =(-7 / 4)(-3 / 16)(x+1)^{-11 / 4}=(21 / 64)(x+1)^{-11 / 4} f^{\prime \prime \prime}(0)=\frac{21}{64} . \\
f(x)=\sqrt[4]{x+1}=1+\frac{1}{4} \cdot x+\frac{(-3 / 16) x^{2}}{2!}+\frac{(21 / 64) x^{3}}{3!}+\cdots & \\
=1+\frac{x}{4}-\frac{3 x^{2}}{32}+\frac{7 x^{3}}{128}-\cdots . & &
\end{array}
$$

(10.)

$$
\begin{aligned}
f(\theta) & =\cos \theta & f\left(\frac{\pi}{4}\right) & =\frac{\sqrt{2}}{2}, \\
f^{\prime}(\theta) & =-\sin \theta & f^{\prime}\left(\frac{\pi}{4}\right) & =-\frac{\sqrt{2}}{2}, \\
f^{\prime \prime}(\theta) & =-\cos \theta & f^{\prime \prime}\left(\frac{\pi}{4}\right) & =-\frac{\sqrt{2}}{2}, \\
f^{\prime \prime \prime}(\theta) & =\sin \theta & f^{\prime \prime \prime}\left(\frac{\pi}{4}\right) & =\frac{\sqrt{2}}{2} .
\end{aligned}
$$

$$
\begin{aligned}
\cos \theta & =\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(\theta-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{2} \frac{\left(\theta-\frac{\pi}{4}\right)^{2}}{2!}+\frac{\sqrt{2}}{2} \frac{\left(\theta-\frac{\pi}{4}\right)^{3}}{3!}-\cdots \\
& =\frac{\sqrt{2}}{2}-\frac{\sqrt{2}}{2}\left(\theta-\frac{\pi}{4}\right)-\frac{\sqrt{2}}{4}\left(\theta-\frac{\pi}{4}\right)^{2}+\frac{\sqrt{2}}{12}\left(\theta-\frac{\pi}{4}\right)^{3}-\cdots
\end{aligned}
$$

11. Differentiating gives

$$
\begin{array}{rlrl}
f(t) & =\cos t & f\left(\frac{\pi}{6}\right) & =\frac{\sqrt{3}}{2}, \\
f^{\prime}(t) & =-\sin t & f^{\prime}\left(\frac{\pi}{6}\right) & =-\frac{1}{2}, \\
f^{\prime \prime}(t) & =-\cos t & f^{\prime \prime}\left(\frac{\pi}{6}\right) & =-\frac{\sqrt{3}}{2}, \\
f^{\prime \prime \prime}(t) & =\sin t & f^{\prime \prime \prime}\left(\frac{\pi}{6}\right) & =\frac{1}{2} .
\end{array}
$$

$$
\begin{aligned}
\cos t & =\frac{\sqrt{3}}{2}-\frac{1}{2}\left(t-\frac{\pi}{6}\right)-\frac{\sqrt{3}}{2} \frac{\left(t-\frac{\pi}{6}\right)^{2}}{2!}+\frac{1}{2} \frac{\left(t-\frac{\pi}{6}\right)^{3}}{3!}-\cdots \\
& =\frac{\sqrt{3}}{2}-\frac{1}{2}\left(t-\frac{\pi}{6}\right)-\frac{\sqrt{3}}{4}\left(t-\frac{\pi}{6}\right)^{2}+\frac{1}{12}\left(t-\frac{\pi}{6}\right)^{3}-\cdots
\end{aligned}
$$

12.

$$
\begin{aligned}
f(\theta) & =\sin \theta & f\left(-\frac{\pi}{4}\right) & =-\frac{\sqrt{2}}{2}, \\
f^{\prime}(\theta) & =\cos \theta & f^{\prime}\left(-\frac{\pi}{4}\right) & =\frac{\sqrt{2}}{2}, \\
f^{\prime \prime}(\theta) & =-\sin \theta & f^{\prime \prime}\left(-\frac{\pi}{4}\right) & =\frac{\sqrt{2}}{2}, \\
f^{\prime \prime \prime}(\theta) & =-\cos \theta & f^{\prime \prime \prime}\left(-\frac{\pi}{4}\right) & =-\frac{\sqrt{2}}{2} .
\end{aligned}
$$

$$
\begin{aligned}
\sin \theta & =-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(\theta+\frac{\pi}{4}\right)+\frac{\sqrt{2}}{2} \frac{\left(\theta+\frac{\pi}{4}\right)^{2}}{2!}-\frac{\sqrt{2}}{2} \frac{\left(\theta+\frac{\pi}{4}\right)^{3}}{3!}+\cdots \\
& =-\frac{\sqrt{2}}{2}+\frac{\sqrt{2}}{2}\left(\theta+\frac{\pi}{4}\right)+\frac{\sqrt{2}}{4}\left(\theta+\frac{\pi}{4}\right)^{2}-\frac{\sqrt{2}}{12}\left(\theta+\frac{\pi}{4}\right)^{3}+\cdots .
\end{aligned}
$$

13.

$$
\begin{array}{rlrl}
f(x) & =\tan x & f\left(\frac{\pi}{4}\right) & =1, \\
f^{\prime}(x) & =\frac{1}{\cos ^{2} x} & f^{\prime}\left(\frac{\pi}{4}\right) & =2, \\
f^{\prime \prime}(x) & =\frac{-2(-\sin x)}{\cos ^{3} x}=\frac{2 \sin x}{\cos ^{3} x} & f^{\prime \prime}\left(\frac{\pi}{4}\right) & =4, \\
f^{\prime \prime \prime}(x) & =\frac{-6 \sin x(-\sin x}{\cos ^{4} x}+\frac{2}{\cos ^{2} x} & f^{\prime \prime \prime}\left(\frac{\pi}{4}\right) & =16 .
\end{array}
$$

$$
\begin{aligned}
\tan x & =1+2\left(x-\frac{\pi}{4}\right)+4 \frac{\left(x-\frac{\pi}{4}\right)^{2}}{2!}+16 \frac{\left(x-\frac{\pi}{4}\right)^{3}}{3!}+\cdots \\
& =1+2\left(x-\frac{\pi}{4}\right)+2\left(x-\frac{\pi}{4}\right)^{2}+\frac{8}{3}\left(x-\frac{\pi}{4}\right)^{3}+\cdots
\end{aligned}
$$

(14.)

$$
\begin{array}{rlrl}
f(x) & =\frac{1}{x} & f(1) & =1 \\
f^{\prime}(x) & =-\frac{1}{x^{2}} & f^{\prime}(1) & =-1 \\
f^{\prime \prime}(x) & =\frac{2}{x^{3}} & f^{\prime \prime}(1) & =2 \\
f^{\prime \prime \prime}(x) & =-\frac{6}{x^{4}} \quad f^{\prime \prime \prime}(1) & =-6
\end{array}
$$

796 Chapter Ten /SOLUTIONS

$$
\begin{aligned}
\frac{1}{x} & =1-(x-1)+\frac{2(x-1)^{2}}{2!}-\frac{6(x-1)^{3}}{3!}+\cdots \\
& =1-(x-1)+(x-1)^{2}-(x-1)^{3}+\cdots
\end{aligned}
$$

15. Again using the derivatives found in Problem 14, we have

$$
\begin{aligned}
& f(2)=\frac{1}{2}, \quad f^{\prime}(2)=-\frac{1}{4}, \quad f^{\prime \prime}(2)=\frac{1}{4}, \quad f^{\prime \prime \prime}(2)=-\frac{3}{8} \\
& \frac{1}{x}= \\
& \frac{1}{2}-\frac{x-2}{4}+\frac{(x-2)^{2}}{4 \cdot 2!}-\frac{3(x-2)^{3}}{8 \cdot 3!}+\cdots \\
&=\frac{1}{2}-\frac{(x-2)}{4}+\frac{(x-2)^{2}}{8}-\frac{(x-2)^{3}}{16}+\cdots
\end{aligned}
$$

16. Using the derivatives from Problem 14, we have

$$
f(-1)=-1, \quad f^{\prime}(-1)=-1, \quad f^{\prime \prime}(-1)=-2, \quad f^{\prime \prime \prime}(-1)=-6
$$

Hence,

$$
\begin{aligned}
\frac{1}{x} & =-1-(x+1)-\frac{2(x+1)^{2}}{2!}-\frac{6(x+1)^{3}}{3!}-\cdots \\
& =-1-(x+1)-(x+1)^{2}-(x+1)^{3}-\cdots
\end{aligned}
$$

17. The general term can be written as x^{n} for $n \geq 0$.
18. The general term can be written as $(-1)^{n} x^{n}$ for $n \geq 0$.
19. The general term can be written as $-x^{n} / n$ for $n \geq 1$.
20. The general term can be written as $(-1)^{n-1} x^{n} / n$ for $n \geq 1$.
21. The general term can be written as $(-1)^{k} x^{2 k+1} /(2 k+1)$! for $k \geq 0$.
22. The general term can be written as $(-1)^{k} x^{2 k+1} /(2 k+1)$ for $k \geq 0$.

798 Chapter Ten /SOLUTIONS

2 points 30. The second coefficient of the Taylor expansion is

$$
\frac{g^{\prime \prime}(0)}{2}=1, \quad \text { so } \quad g^{\prime \prime}(0)=2
$$

Similarly, the third coefficient is

$$
\frac{g^{\prime \prime \prime}(0)}{3!}=0 \quad \text { so } \quad g^{\prime \prime \prime}(0)=0
$$

Finally, the tenth coefficient is

$$
\frac{g^{(10)}(0)}{10!}=\frac{1}{5!} \quad \text { so } \quad g^{(10)}(0)=\frac{10!}{5!} .
$$

Using the fact that $i^{2}=-1, i^{3}=-i, i^{4}=1, i^{5}=i, \cdots$, we can rewrite the series as

$$
\cos \theta+i \sin \theta=1+i \theta+\frac{(i \theta)^{2}}{2!}+\frac{(i \theta)^{3}}{3!}+\frac{(i \theta)^{4}}{4!}+\frac{(i \theta)^{5}}{5!}+\frac{(i \theta)^{6}}{6!}+\cdots
$$

Amazingly enough, this series is the Taylor series for e^{x} with $i \theta$ substituted for x. Therefore, we have shown that

$$
\cos \theta+i \sin \theta=e^{i \theta}
$$

34. This is the series for e^{x} with x replaced by 2 , so the series converges to e^{2}.
35. This is the series for $\sin x$ with x replaced by 1 , so the series converges to $\sin 1$.
36. This is the series for $1 /(1-x)$ with x replaced by $1 / 4$, so the series converges to $1 /(1-(1 / 4))=4 / 3$.
37. This is the series for $\cos x$ with x replaced by 10 , so the series converges to $\cos 10$.
38. This is the series for $\ln (1+x)$ with x replaced by $1 / 2$, so the series converges to $\ln (3 / 2)$.
39. The Taylor series for $f(x)=1 /(1+x)$ is

$$
\frac{1}{1+x}=1-x+x^{2}-x^{3}+\cdots .
$$

Substituting $x=0.1$ gives

$$
1-0.1+(0.1)^{2}-(0.1)^{3}+\cdots=\frac{1}{1+0.1}=\frac{1}{1.1} .
$$

Alternatively, this is a geometric series with $a=1, x=-0.1$.
40. This is the series for e^{x} with $x=3$ substituted. Thus

$$
1+3+\frac{9}{2!}+\frac{27}{3!}+\frac{81}{4!}+\cdots=1+3+\frac{3^{2}}{2!}+\frac{3^{3}}{3!}+\frac{3^{4}}{4!}+\cdots=e^{3}
$$

41. This is the series for $\cos x$ with $x=1$ substituted. Thus

$$
1-\frac{1}{2!}+\frac{1}{4!}-\frac{1}{6!}+\cdots=\cos 1
$$

42. This is the series for e^{x} with -0.1 substituted for x, so

$$
1-0.1+\frac{0.01}{2!}-\frac{0.001}{3!}+\cdots=e^{-0.1}
$$

43. Since $1+x+x^{2}+x^{3}+\cdots=\frac{1}{1-x}$, a geometric series, we solve $\frac{1}{1-x}=5$ giving $\frac{1}{5}=1-x$, so $x=\frac{4}{5}$.
44. Since $x-\frac{1}{2} x^{2}+\frac{1}{3} x^{3}+\cdots=\ln (1+x)$, we solve $\ln (1+x)=0.2$, giving $1+x=e^{0.2}$, so $x=e^{0.2}-1$.

Solutions for Section 10.3

Exercises

1. Substitute $y=-x$ into $e^{y}=1+y+\frac{y^{2}}{2!}+\frac{y^{3}}{3!}+\cdots$. We get

$$
\begin{aligned}
e^{-x} & =1+(-x)+\frac{(-x)^{2}}{2!}+\frac{(-x)^{3}}{3!}+\cdots \\
& =1-x+\frac{x^{2}}{2!}-\frac{x^{3}}{3!}+\cdots .
\end{aligned}
$$

10.3

800 Chapter Ten /SOLUTIONS
2. We'll use

$$
\begin{aligned}
\sqrt{1+y}=(1+y)^{\frac{1}{2}}= & 1+\left(\frac{1}{2}\right) y+\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right) \frac{y^{2}}{2!} \\
& +\left(\frac{1}{2}\right)\left(\frac{-1}{2}\right)\left(\frac{-3}{2}\right) \frac{y^{3}}{3!}+\cdots \\
= & 1+\frac{y}{2}-\frac{y^{2}}{8}+\frac{y^{3}}{16}-\cdots .
\end{aligned}
$$

Substitute $y=-2 x$.

$$
\begin{aligned}
\sqrt{1-2 x} & =1+\frac{(-2 x)}{2}-\frac{(-2 x)^{2}}{8}+\frac{(-2 x)^{3}}{16}-\cdots \\
& =1-x-\frac{x^{2}}{2}-\frac{x^{3}}{2}-\cdots
\end{aligned}
$$

8.

$$
\begin{aligned}
\frac{z}{e^{z^{2}}}=z e^{-z^{2}} & =z\left(1+\left(-z^{2}\right)+\frac{\left(-z^{2}\right)^{2}}{2!}+\frac{\left(-z^{2}\right)^{3}}{3!}+\cdots\right) \\
& =z-z^{3}+\frac{z^{5}}{2!}-\frac{z^{7}}{3!}+\cdots
\end{aligned}
$$

9.

$$
\begin{aligned}
\phi^{3} \cos \left(\phi^{2}\right) & =\phi^{3}\left(1-\frac{\left(\phi^{2}\right)^{2}}{2!}+\frac{\left(\phi^{2}\right)^{4}}{4!}-\frac{\left(\phi^{2}\right)^{6}}{6!}+\cdots\right) \\
& =\phi^{3}-\frac{\phi^{7}}{2!}+\frac{\phi^{11}}{4!}-\frac{\phi^{15}}{6!}+\cdots
\end{aligned}
$$

10. Substituting the series for $\sin \theta=\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots$ into

$$
\sqrt{1+y}=1+\frac{1}{2} y-\frac{1}{8} y^{2}+\frac{1}{16} y^{3}-\cdots
$$

gives

$$
\begin{aligned}
\sqrt{1+\sin \theta}= & 1+\frac{1}{2}\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)-\frac{1}{8!}\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)^{2} \\
& +\frac{1}{16}\left(\theta-\frac{\theta^{3}}{3!}+\frac{\theta^{5}}{5!}-\cdots\right)^{3}-\cdots \\
= & 1+\frac{1}{2} \theta-\frac{\theta^{2}}{8}+\left(\frac{\theta^{3}}{16}-\frac{\theta^{3}}{2 \cdot 3!}\right)+\cdots \\
= & 1+\frac{1}{2} \theta-\frac{1}{8} \theta^{2}-\frac{1}{48} \theta^{3}+\cdots
\end{aligned}
$$

11.

$$
\sqrt{(1+t)} \sin t=\left(1+\frac{t}{2}-\frac{t^{2}}{8}+\frac{t^{3}}{16}-\cdots\right)\left(t-\frac{t^{3}}{3!}+\frac{t^{5}}{5!}-\cdots\right)
$$

Multiplying and collecting terms yields

$$
\begin{aligned}
\sqrt{(1+t)} \sin t & =t+\frac{t^{2}}{2}-\left(\frac{t^{3}}{3!}+\frac{t^{3}}{8}\right)+\left(\frac{t^{4}}{16}-\frac{t^{4}}{12}\right)+\cdots \\
& =t+\frac{1}{2} t^{2}-\frac{7}{24} t^{3}-\frac{1}{48} t^{4}+\cdots
\end{aligned}
$$

(12.)

$$
e^{t} \cos t=\left(1+t+\frac{t^{2}}{2!}+\frac{t^{3}}{3!}+\frac{t^{4}}{4!}+\cdots\right)\left(1-\frac{t^{2}}{2!}+\frac{t^{4}}{4!}-\frac{t^{6}}{6!}+\cdots\right)
$$

Multiplying out and collecting terms gives

$$
\begin{aligned}
e^{t} \cos t & =1+t+\left(\frac{t^{2}}{2!}-\frac{t^{2}}{2!}\right)+\left(\frac{t^{3}}{3!}-\frac{t^{3}}{2!}\right)+\left(\frac{t^{4}}{4!}+\frac{t^{4}}{4!}-\frac{t^{4}}{(2!)^{2}}\right)+\cdots \\
& =1+t-\frac{t^{3}}{3}-\frac{t^{4}}{6}+\cdots
\end{aligned}
$$

13. Multiplying out gives $(1+x)^{3}=1+3 x+3 x^{2}+x^{3}$. Since this polynomial equals the original function for all x, it must be the Taylor series. The general term is $0 \cdot x^{n}$ for $n \geq 4$.
(b) For x near 0 , we can approximate $e^{x}-e^{-x}$ by its third degree Taylor polynomial, $P_{3}(x)$:

$$
e^{x}-e^{-x} \approx P_{3}(x)=2 x+\frac{x^{3}}{3} .
$$

The function $P_{3}(x)$ is a cubic polynomial whose graph is symmetric about the origin.
24. Notice that $\sum p x^{p-1}$, is the derivative, term-by-term, of a geometric series:

$$
\sum_{p=1}^{\infty} p x^{p-1}=1 \cdot x^{0}+2 \cdot x^{1}+3 \cdot x^{2}+\cdots=\frac{d}{d x}(\underbrace{x+x^{2}+x^{3}+\cdots}_{\text {Geometric series }}) .
$$

For $|x|<1$, the sum of the geometric series with first term x and common ratio x is

$$
x+x^{2}+x^{3}+\cdots=\frac{x}{1-x} .
$$

Differentiating gives

$$
\sum_{p=1}^{\infty} p x^{p-1}=\frac{d}{d x}\left(\frac{x}{1-x}\right)=\frac{1(1-x)-x(-1)}{(1-x)^{2}}=\frac{1}{(1-x)^{2}}
$$

25. From the series for $\ln (1+y)$,

$$
\ln (\dot{1}+y)=y-\frac{y^{2}}{2}+\frac{y^{3}}{3}-\frac{y^{4}}{4}+\cdots
$$

we get

$$
\ln \left(1+y^{2}\right)=y^{2}-\frac{y^{4}}{2}+\frac{y^{6}}{3}-\frac{y^{8}}{4}+\cdots
$$

The Taylor series for $\sin y$ is

So

$$
\sin y=y-\frac{y^{3}}{3!}+\frac{y^{5}}{5!}-\frac{y^{7}}{7!}+\cdots
$$

$$
\sin y^{2}=y^{2}-\frac{y^{6}}{3!}+\frac{y^{10}}{5!}-\frac{y^{14}}{7!}+\cdots
$$

The Taylor series for $\cos y$ is

$$
\cos y=1-\frac{y^{2}}{2!}+\frac{y^{4}}{4!}-\frac{y^{6}}{6!}+\cdots
$$

So

$$
1-\cos y=\frac{y^{2}}{2!}-\frac{y^{4}}{4!}+\frac{y^{6}}{6!}+\cdots
$$

Near $y=0$, we can drop terms beyond the fourth degree in each expression:

$$
\begin{aligned}
\ln \left(1+y^{2}\right) & \approx y^{2}-\frac{y^{4}}{2} \\
\sin y^{2} & \approx y^{2} \\
1-\cos y & \approx \frac{y^{2}}{2!}-\frac{y^{4}}{4!}
\end{aligned}
$$

(Note: These functions are all even, so what holds for negative y will hold for positive y.)
Clearly $1-\cos y$ is smallest, because the y^{2} term has a factor of $\frac{1}{2}$. Thus, for small y,

$$
\frac{y^{2}}{2!}-\frac{y^{4}}{4!}<y^{2}-\frac{y^{4}}{2}<y^{2}
$$

so

$$
1-\cos y<\ln \left(1+y^{2}\right)<\sin \left(y^{2}\right)
$$

26. The Taylor series about 0 for $y=\frac{1}{1-x^{2}}$ is

$$
y=1+x^{2}+x^{4}+x^{6}+\cdots .
$$

The series for $y=(1+x)^{1 / 4}$ is, using the binomial expansion,

$$
y=1+\frac{1}{4} x+\frac{1}{4}\left(-\frac{3}{4}\right) \frac{x^{2}}{2!}+\frac{1}{4}\left(-\frac{3}{4}\right)\left(-\frac{7}{4}\right) \frac{x^{3}}{3!}+\cdots .
$$

The series for $y=\sqrt{1+\frac{x}{2}}=\left(1+\frac{x}{2}\right)^{1 / 2}$ is, again using the binomial expansion,

$$
y=1+\frac{1}{2} \cdot \frac{x}{2}+\frac{1}{2}\left(-\frac{1}{2}\right) \cdot \frac{x^{2}}{8}+\frac{1}{2}\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdot \frac{x^{3}}{48}+\cdots
$$

Similarly for $y=\frac{1}{\sqrt{1-x}}=(1-x)^{-(1 / 2)}$,

$$
y=1+\left(-\frac{1}{2}\right)(-x)+\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right) \cdot \frac{x^{2}}{2!}+\left(-\frac{1}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{5}{2}\right) \cdot \frac{-x^{3}}{3!}+\cdots .
$$

Near 0 , let's truncate these series after their x^{2} terms:

$$
\begin{aligned}
\frac{1}{1-x^{2}} & \approx 1+x^{2}, \\
(1+x)^{1 / 4} & \approx 1+\frac{1}{4} x-\frac{3}{32} x^{2}, \\
\sqrt{1+\frac{x}{2}} & \approx 1+\frac{1}{4} x-\frac{1}{32} x^{2}, \\
\frac{1}{\sqrt{1-x}} & \approx 1+\frac{1}{2} x+\frac{3}{8} x^{2} .
\end{aligned}
$$

Thus $\frac{1}{1-x^{2}}$ looks like a parabola opening upward near the origin, with y-axis as the axis of symmetry, so (a) $=\mathrm{I}$.
II.

Now $\frac{1}{\sqrt{1-x}}$ has the largest positive slope ($\left(\frac{1}{2}\right.$), and is concave up (because the coefficient of x^{2} is positive) So (d)
The last two both have positive slope $\left(\frac{1}{4}\right)$ and are concave down. Since $(1+x)^{\frac{1}{4}}$ has the smallest second derivative (ie., the most negative coefficient of x^{2}), (b) $=$ IV and therefore (c) $=\mathrm{III}$

