Practice Exam for second Midterm

March 28, 2013

1. Convert to polar coordinates the following Cartesian coordinates
(a) $(-1,0)$,
(b) $(\sqrt{6},-\sqrt{2})$,
(c) $(-\sqrt{3}, 1)$.
2. Find the area inside the spiral $r=\theta$ for $0 \leq \theta \leq 2 \pi$.
3. Find the arclength of the cartioid $r=1-\sin \theta$ between $\theta=0$ and $\theta=\pi / 2$.
4. Find the sum of the finite series $(0.5)^{3}+\left(0.5^{4}+(0.5)^{5}+\ldots+(0.5)^{2013}\right.$.
5. Calculate the sum $1+2+5+6+9+10+13+14+\ldots+2009+2010+$ $2013+2014$.
6. Calculate the sum of the infinite series $2-\frac{2}{3}+\frac{2}{9}-\frac{2}{27}+\ldots$.
7. Determine whether the following sequences converge or diverge:
(a) $\frac{3+4 n}{5+7 n}$
(b) $\frac{1}{n}+\ln n$
(c) $\sin \left(\frac{\pi}{4} n\right)$.
8. Determine which of the series converge:
(a) $\sum_{n=1}^{\infty} \frac{1}{(n+2)^{2}}$
(b) $\sum_{n=1}^{\infty} \frac{n}{2^{n}}$
(c) $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^{2}+1}}$
(d) $\sum_{n=1}^{\infty} \frac{n^{3}-2 n^{2}+n+1}{n^{5}-2}$
(e) $\sum_{n=1}^{\infty} 2^{-n} \frac{(n+1)}{(n+2)}$
9. A new car costs $\$ 30,000$; it loses 10% of its value each year. Maintenance is $\$ 500$ the first year and increases by 20% annually.
(a) Find a formula for l_{n}, the value lost by the car in year n.
(b) Find a formula for m_{n}, the maintenance expenses in year n.
(c) In what year do the maintenance expenses first exceed the value lost by the car?
10. True/False
(a) You can tell if a sequence converges by looking at the first 1000 terms.
(b) If the sequence s_{n} of positive terms is unbounded, then the sequence has a term greater than a million.
(c) If all terms s_{n} of a sequence are less than a million, then the sequence is bounded.
(d) The series $\sum_{n=1}^{\infty} 2^{(-1)^{n}}$ converges.
(e) If $\sum a_{n} b_{n}$ converges then $\sum a_{n}$ and $\sum b_{n}$ converge.
(f) If $a_{n}>0.5 b_{n}>0$ for all n and $\sum b_{n}$ diverges, then $\sum a_{n}$ diverges.
(g) If $\int_{0}^{\infty} f(x) d x$ converges, then $\int_{0}^{\infty} 7 f(x) d x$ converges.
(h) If $\int_{0}^{\infty} f(x) d x$ converges, then $\int_{0}^{\infty} f(7 x) d x$ converges.
