Practice Exam for second Midterm

March 28, 2013

- 1. Convert to polar coordinates the following Cartesian coordinates
 - (a) (-1, 0),
 - (b) $(\sqrt{6}, -\sqrt{2}),$
 - (c) $(-\sqrt{3}, 1)$.
- 2. Find the area inside the spiral $r = \theta$ for $0 \le \theta \le 2\pi$.
- 3. Find the arclength of the cartioid $r = 1 \sin \theta$ between $\theta = 0$ and $\theta = \pi/2$.
- 4. Find the sum of the finite series $(0.5)^3 + (0.5^4 + (0.5)^5 + \ldots + (0.5)^{2013}$.
- 5. Calculate the sum $1 + 2 + 5 + 6 + 9 + 10 + 13 + 14 + \ldots + 2009 + 2010 + 2013 + 2014$.
- 6. Calculate the sum of the infinite series $2 \frac{2}{3} + \frac{2}{9} \frac{2}{27} + \dots$
- 7. Determine whether the following sequences converge or diverge:

(a)
$$\frac{3+4n}{5+7n}$$

(b)
$$\frac{1}{n} + \ln n$$

(c)
$$\sin\left(\frac{\pi}{4}n\right)$$

8. Determine which of the series converge:

(a)
$$\sum_{n=1}^{\infty} \frac{1}{(n+2)^2}$$

(b)
$$\sum_{n=1}^{\infty} \frac{n}{2^n}$$

(c)
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n^2 + 1}}$$

(d) $\sum_{n=1}^{\infty} \frac{n^3 - 2n^2 + n + 1}{n^5 - 2}$
(e) $\sum_{n=1}^{\infty} 2^{-n} \frac{(n+1)}{(n+2)}$

- 9. A new car costs \$30,000; it loses 10% of its value each year. Maintenance is \$500 the first year and increases by 20% annually.
 - (a) Find a formula for l_n , the value lost by the car in year n.
 - (b) Find a formula for m_n , the maintenance expenses in year n.
 - (c) In what year do the maintenance expenses first exceed the value lost by the car?

10. True/False

- (a) You can tell if a sequence converges by looking at the first 1000 terms.
- (b) If the sequence s_n of positive terms is unbounded, then the sequence has a term greater than a million.
- (c) If all terms s_n of a sequence are less than a million, then the sequence is bounded.

(d) The series
$$\sum_{n=1}^{\infty} 2^{(-1)^n}$$
 converges.

- (e) If $\sum a_n b_n$ converges then $\sum a_n$ and $\sum b_n$ converge.
- (f) If $a_n > 0.5b_n > 0$ for all n and $\sum_{r \propto} b_n$ diverges, then $\sum a_n$ diverges.

(g) If
$$\int_0^\infty f(x) dx$$
 converges, then $\int_0^\infty 7f(x) dx$ converges.
(h) If $\int_0^\infty f(x) dx$ converges, then $\int_0^\infty f(7x) dx$ converges.