Math 53 Homework 9

due April 17 in class

1. For the following two complex numbers find the real part, the imaginary part, the modulus and the argument:

(a)
$$\frac{1+3i}{7+2i}$$
.
(b) $\frac{1+\sqrt{-3}}{2}$.

2. Using the Cauchy-Riemann equations show that $f(z) = z^3$ is analytic for all $z \in \mathbb{C}$.

- 3. Let $f(z) = \frac{1}{\sin z}$.
 - (a) Find the first three nonzero terms of the Laurent series of f(z) about z = 0.
 - (b) What is the residue of f(z) at z = 0.
- 4. Let N be a positive integer. Let $\gamma_1, \gamma_2, \gamma_3, \gamma_4$ be smooth paths from [-(N+1/2), N+1/2] to \mathbb{C} be defined as

$$\gamma_1(t) = (N+1/2) + i(t)$$

$$\gamma_2(t) = -t + i(N+1/2)$$

$$\gamma_3(t) = -(N+1/2) + i(-t)$$

$$\gamma_4(t) = t + i(-(N+1/2)).$$

Let γ_N be the closed path created by concatenating $\gamma_1, \gamma_2, \gamma_3, \gamma_4$.

(a) Evaluate $\int_{\gamma_1} z^2 dz$. (b) Evaluate $\int_{\gamma_N} z^2 dz$. (c) Evaluate $\int_{\gamma_N} \frac{1}{z^2 - N^2} dz$.

5. Let γ be the path centered at -N with radius N (going in a clockwise direction).

- (a) Using the residue theorem, evaluate $\int_{\gamma} \frac{1}{z^2 N^2} dz$.
- (b) Show that the path γ can be written as $\gamma(t) = -N(e^{it} + e^{-it})$ for $t \in [0, 2\pi]$.
- (c) Evaluate $\int_{\gamma} \frac{1}{z^2 N^2} dz$ the long way using (b).