Cardinality Homework

April 15, 2014

For the following problems assume that if A is a set, |A| is the cardinality of A.

Problem 1. In the following problems, find a bijection from A to B (you need not prove that the function you list is a bijection):

- (a) A = (-3, 3), B = (7, 12).
- (b) A = (0, 2), B = (0, 1).
- (c) A = (1,7), B = (-2,2).
- (d) $A = \mathbb{N}, B = \mathbb{Z}.$
- (e) $A = \mathbb{R}, B = (0, \infty).$
- (f) $A = \mathbb{N}, B = \{\frac{\sqrt{2}}{n} : n \in \mathbb{N}\}.$
- (g) $A = \{0, 1\} \times \mathbb{N}, B = \mathbb{N}.$
- (h) A = [0, 1], B = (0, 1).

Problem 2. Prove or disprove that the following sets are countable:

- (a) $\{\log n : n \in \mathbb{N}\}.$
- $(b) \ \{(m,n) \in \mathbb{N} \times \mathbb{N} : m \le n\}.$
- (c) \mathbb{Q}^{100} .
- (d) The set of irrational numbers.

Problem 3. Let A and B be sets. Prove that if $|A| \leq |B|$ and $|B| \leq |A|$, then |A| = |B|.

Remark 1. This result is known as the Cantor-Bernstein-Schöeder Theorem.

Problem 4. Prove that |(0,1)| = |[0,1]|.

Problem 5. Dedekind decided he wanted to write a definition of an infinite set that did not depend on the natural numbers. He defined it as follows: "A is an infinite set if there exists a proper subset B of A (that is, $B \subseteq A$ and $A \neq B$) such that |A| = |B|." We'll call sets satisfying this condition "Dedekind-infinite" sets.

- (a) Prove that if A is a finite set, then A is not Dedekind-infinite.
- (b) Prove that if A is an infinite set, then A is Dedekind-infinite.

Note that proving (a) and (b) means that the natural definition of an infinite set (saying that it is not finite) is equivalent to the Dedekind definition.

Problem 6. Let \mathfrak{F} be the set of all functions $\mathbb{N} \to \{0,1\}$. Show that $|\mathbb{R}| = |\mathfrak{F}|$.

Problem 7. Let \mathfrak{F} be the set of all functions $\mathbb{R} \to \{0,1\}$. Show that $|\mathbb{R}| < |\mathfrak{F}|$.