\qquad

Math 230 Midterm \#1

February 7, 2014
Instructions: This is a closed book, closed notes exam. You are not to provide or receive help from any outside source during the exam.

- You may NOT use a calculator.
- Show all of your work.

Question	Points	Score
1	20	
2	20	
3	20	
4	20	
5	20	
6	10	
7	20	
8	20	
Total:	150	

1. True or False (Just answer true or false, you don't need to explain your answer).
(a) [2 points] $T \subseteq A$ if and only if $T \in 2^{A}$.
(b) [2 points] There is no x such that $x \subseteq\{x\}$.
(c) [2 points] If x is a real number and $x^{2}<0$, then x is a perfect number.
(d) [2 points] Two right triangles that have hypotenuses of the same length have the same area.
(e) [2 points] $\exists x, \forall y, x y=0$.
(f) $[2$ points $] \forall x, \exists y, x y=0$.
(g) $[2$ points $] \mathbb{N} \in 2^{\mathbb{Z}}$.
(h) $[2$ points $]\{2\} \subseteq\{\{1\},\{2\},\{3\}\}$.
(i) [2 points] If A and B are sets then $2^{A} \subseteq 2^{B}$.
(j) [2 points] A negation of the statement "There is a natural number that is prime and even" can be phrased as "All natural numbers that are prime are odd".
2. For the following pairs of statements A, B, write a if the statement "If A, then B " is true, write b if the statement "If B, then A " is true, write c if the statement " A if and only if B is true", and write d if none of the statements are true. You should write all that apply. Note that in the following, x and y are integers.
(a) [5 points] $A: x y=0 . B: x=0$ and $y=0$.
(b) [5 points] A : Lines l_{1} and l_{2} are parallel. B : Lines l_{1} and l_{2} are perpendicular.
(c) [5 points] A : Joe is a grandfather. B : Joe is male.
(d) [5 points] $A: x<0 B: x^{3}<0$.
3. Proofs:
(a) [10 points] Let x be an integer. Prove that x is odd if and only if there is an integer b such that $x=2 b-1$.
(b) [5 points] For real numbers a and b, prove that if $0<a<b$, then $a^{2}<b^{2}$
(c) [5 points] Let A, B and C be sets satisfying $A \subseteq B$ and $B \subseteq C$. Prove that $A \subseteq C$.
4. Find counterexamples to disprove the following statements:
(a) [5 points] If a, b and c are positive integers with $a \mid(b c)$, then $a \mid b$ or $a \mid c$.
(b) [5 points] Two right triangles have the same area if and only if the lengths of their hypotenuses are the same.
(c) [5 points] For real numbers a and b, if $a<b$, then $a^{2}<b^{2}$.
(d) [5 points] Let A and B be sets. Then $(A \cup B)-B=A$.
5. Boolean Algebra
(a) [5 points] Prove or disprove the following Boolean expression identity:

$$
(x \wedge y) \vee(x \wedge \neg y)=x
$$

(b) [5 points] Besides the classic Boolean operations $\wedge, \vee, \neg, \rightarrow, \leftarrow$, we have others, an example of one is the "nand" operation denoted by $\bar{\lambda}$. We define $x \bar{\wedge} y$ to be $\neg(x \wedge y)$. Construct a truth table for $\bar{\wedge}$.
(c) [5 points] Prove or disprove that $\bar{\lambda}$ is commutative.
(d) [5 points] Prove or disprove that $\bar{\lambda}$ is associative.
6. In my comic book library I have 15 Daredevil paperbacks, 12 Spider-man paperbacks and 3 Batman paperbacks
(a) [5 points] In how many different ways can these trade paperbacks be arranged on a bookshelf?
(b) [5 points] In how many different ways can these trade paperbacks be arranged on a bookshelf if all the books of the same character are grouped together?
7. Write out the following sets by listing their elements between curly braces.
(a) [5 points] $\{x \in \mathbb{N}: x \leq 10$ and $3 \mid x\}$.
(b) [5 points] $\left\{x \in \mathbb{Z}: x^{2}=4\right\}$.
(c) [5 points] $\{x \in \mathbb{Z}: 10 \mid x$ and $x \mid 100\}$.
(d) [5 points] $\{x: x \subseteq\{1,2,3,4,5\}$ and $|x| \leq 1\}$.
8. Let $A \times B=\{(1,2),(1,3),(1,7),(2,2),(2,3),(2,7),(6,2),(6,3),(6,7)\}$. (a) [5 points] What is $A \cup B$?
(b) [5 points] What is $A \cap B$?
(c) [5 points] What is $A-B$?
(d) [5 points] What is $A \Delta B$?

