Practice Exam 2

1. Prove that the following identities are true for all positive integers n :
(a) $1+5+9+\ldots+(4 n-3)=2 n^{2}-n$.
(b) $1+10+10^{2}+\ldots+10^{n}=\frac{10^{(n+1)}-1}{9}$.
2. Prove that the following inequalities are true:
(a) $e^{n}>n+7$, for $n \geq 3$.
(b) $n^{2} \geq 6 n+2$, for $n \geq 7$.
3. Prove by induction that the sum of the angles of a convex n-gon (with $n \geq 3$) is $180(n-2)$ degrees.
4. For each of the following relations defined on the set $\{1,2,3\}$ determine whether they are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.
(a) $R=\{(1,1),(2,2),(3,3)\}$.
(b) $R=\{(1,1),(2,2),(3,3),(1,2)\}$.
(c) $R=\{(1,1),(2,2),(1,2),(2,1)\}$.
(d) $R=\{(1,2),(1,3),(2,3),(2,2)\}$.

5 . For each equivalence relation below, find the requested equivalence class.

- $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ on $\{1,2,3,4\}$. Find [1].
- $R=\{(1,1),(1,2),(2,1),(2,2),(3,3),(4,4)\}$ on $\{1,2,3,4\}$. Find [4].
- R is has-the-same-tens-digit-as on the set $\{x \in \mathbb{Z}: 100<x<200\}$. Find [123].
- R is has-the-same-size-as on $2^{\{1,2,3,4,5\}}$. Find [\{1,3\}].
- $R=\{(a, b): a, b \in \mathbb{Z}, 1 \leq a \leq 30,1 \leq b \leq 30,7 \mid(b-a)\}$ on $\{1,2,3, \ldots, 30\}$. Find [3].

6. Let R be the "is similar" relation on triangles, i.e. if A and B are triangles, then $(A, B) \in R$ if and only if the angles of triangle A are the same as the angles of triangle B. Prove that R is an equivalence relation.
7. A poker hand consists of 5 cards chosen from a standard deck of 52 cards.

- How many different poker hands are there?
- How many poker hands are three-of-a-kind (no full houses)?
- How many poker hands are a straight (could be a straight flush)?
- How many poker hands are just 1 pair and nothing else?
- How many poker hands contain two pairs but are not a full house?

8. How many rectangles can be formed from an $m \times n$ chess board? For example, for a 2×2 chess board, there are nine possible rectangles.
REMARK: More questions to study include the homework exercises, more exercises from the sections covered and I specially recommend practicing proofs involving relations. Make sure you know how to prove something is an equivalence relation, how to prove things using induction and how to count things.
