Practice Exam 2

- 1. Prove that the following identities are true for all positive integers n:
 - (a) $1+5+9+\ldots+(4n-3)=2n^2-n$.
 - (b) $1 + 10 + 10^2 + \ldots + 10^n = \frac{10^{(n+1)} 1}{9}$.
- 2. Prove that the following inequalities are true:
 - (a) $e^n > n+7$, for $n \ge 3$.
 - (b) $n^2 \ge 6n + 2$, for $n \ge 7$.
- 3. Prove by induction that the sum of the angles of a convex *n*-gon (with $n \ge 3$) is 180(n-2) degrees.
- 4. For each of the following relations defined on the set $\{1, 2, 3\}$ determine whether they are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.
 - (a) $R = \{(1,1), (2,2), (3,3)\}.$
 - (b) $R = \{(1,1), (2,2), (3,3), (1,2)\}.$
 - (c) $R = \{(1,1), (2,2), (1,2), (2,1)\}.$
 - (d) $R = \{(1,2), (1,3), (2,3), (2,2)\}.$
- 5. For each equivalence relation below, find the requested equivalence class.
 - $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ on $\{1,2,3,4\}$. Find [1].
 - $R = \{(1,1), (1,2), (2,1), (2,2), (3,3), (4,4)\}$ on $\{1,2,3,4\}$. Find [4].
 - R is has-the-same-tens-digit-as on the set $\{x \in \mathbb{Z} : 100 < x < 200\}$. Find [123].
 - R is has-the-same-size-as on $2^{\{1,2,3,4,5\}}$. Find $[\{1,3\}]$.
 - $R = \{(a,b) : a, b \in \mathbb{Z}, 1 \le a \le 30, 1 \le b \le 30, 7 | (b-a) \}$ on $\{1, 2, 3, \dots, 30 \}$. Find [3].
- 6. Let R be the "is similar" relation on triangles, i.e. if A and B are triangles, then $(A, B) \in R$ if and only if the angles of triangle A are the same as the angles of triangle B. Prove that R is an equivalence relation.
- 7. A poker hand consists of 5 cards chosen from a standard deck of 52 cards.
 - How many different poker hands are there?
 - How many poker hands are three-of-a-kind (no full houses)?
 - How many poker hands are a straight (could be a straight flush)?
 - How many poker hands are just 1 pair and nothing else?
 - How many poker hands contain two pairs but are not a full house?
- 8. How many rectangles can be formed from an $m \times n$ chess board? For example, for a 2×2 chess board, there are nine possible rectangles.

REMARK: More questions to study include the homework exercises, more exercises from the sections covered and I specially recommend practicing proofs involving relations. Make sure you know how to prove something is an equivalence relation, how to prove things using induction and how to count things.