Extra Problem Homework 6 (π-day special)

Let $y(t)$ be the following function of t :

$$
y(t)=\int_{0}^{\infty} e^{-x^{2}} \cos (2 x t) d x
$$

(a) Prove that $y(t)$ satisfies the differential equation

$$
y^{\prime}+2 t y=0 .
$$

(Hint: You have to compute y^{\prime}, then integrate it by parts).
(b) Find the general solution to this differential equation.
(c) In class we proved that

$$
y(0)=\int_{0}^{\infty} e^{-x^{2}} d x=\frac{\sqrt{\pi}}{2} .
$$

Use this initial condition to show that

$$
y(t)=\frac{\sqrt{\pi}}{2} e^{-t^{2}}
$$

