Homework 3 Solutions

Enrique Treviño

February 13, 2016

1 Chapter 4

Problem 1. (Exercise 1)
Prove or disprove each of the following statements.

(a) \(\mathbb{Z}_8 \) is cyclic.

(b) All of the generators of \(\mathbb{Z}_{60} \) are prime.

(c) \(\mathbb{Q} \) is cyclic.

(d) If every proper subgroup of a group \(G \) is cyclic, then \(G \) is a cyclic group.

(e) A group with a finite number of subgroups is finite.

Solution 1.

(a) To turn in.

(b) To turn in.

(c) Suppose that \(\mathbb{Q} \) is cyclic. Suppose that it has \(a \) as its generator. Since \(a \in \mathbb{Q} \), then there exist \(p \) and \(q \) relatively prime integers such that \(a = \frac{p}{q} \). Since \(a \) is a generator, then any rational number \(x \) can be written in the form \(ka \) for some integer \(k \). Therefore \(x = kp/q \). Therefore \(qx \) is an integer, for any rational number \(x \). The rational number \(r = \frac{1}{q+1} \) doesn’t satisfy that \(qr \in \mathbb{Z} \). This contradicts our assumption that \(\mathbb{Q} \) is cyclic, so it is not cyclic.

(d) To turn in.

(e) True. This one is hard to prove. Let \(G \) be a group with finitely many subgroups. Then in particular, there are finitely many cyclic subgroups of the form \(< g > \). Now define the following equivalence relation on the set \(G \): \(g \sim h \) if \(< g > = < h > \). The set of equivalence classes partitions \(G \). Since each equivalence class creates a subgroup of \(G \) and \(G \) has finitely many subgroups, the set of equivalence classes is finite. For the sake of contradiction assume that \(G \) is infinite. Then, by the Pigeonhole principle, at least one of the equivalence classes has infinitely many elements. Suppose the equivalence class with infinitely many elements is \([g] \). Let \(g, h \in [g] \) such that \(g \neq h \), and \(h \neq g^{-1} \). Since \(< g > = < h > \), then there exist \(k, j \in \mathbb{Z} \) such that \(g = h^k \) and \(h = g^j \). Therefore \(g = h^k = (g^j)^k = g^{jk} \). Therefore \(g^{jk-1} = e \) (the identity). Now, note that since \(g \) and \(h \) are not the identity, inverses of each other or equal to each other, then \(jk \neq 1 \), so \(jk - 1 \neq 0 \). So then \(| < g > | \leq |jk - 1| \). But if \(r \in [g] \), then \(r \in < g > \) because \(< r > = < g > \) implies \(r \in < g > \). Since \([g] \) is infinite, \(< g > \) should have infinitely many elements, yet \(< g > \) has finitely many. This contradicts our assumption that \(G \) is infinite, proving that \(G \) is finite.

Problem 2. (Exercise 2)
Find the order of each of the following elements.

(a) \(5 \in \mathbb{Z}_{12} \)
(b) $\sqrt{3} \in \mathbb{R}$
(c) $\sqrt{3} \in \mathbb{R}^*$
(d) $-i \in \mathbb{C}^*$
(e) $72 \in \mathbb{Z}_{240}$.
(f) $312 \in \mathbb{Z}_{471}$.

Solution 2.
(a) To turn in.
(b) To turn in.
(c) To turn in.
(d) $<-i> = \{1, -i, -1, i\}$, so $|<-i>| = 4$.
(e) To turn in.
(f) The gcd of 312 and 471 is 3. Therefore $3 \in (312)$, so the order of 312 is $471/3 = 157$.

Problem 3. (Exercise 3)
List all of the elements in each of the following subgroups.
(a) The subgroup of \mathbb{Z} generated by 7
(b) The subgroup of \mathbb{Z}_{24} generated by 15
(h) The subgroup generated by 5 in \mathbb{Z}_{18}^*

Solution 3. To turn in.

Problem 4. (Exercise 6)
Find the order of every element in the symmetry group of the square, D_4.

Solution 4. To turn in.

Problem 5. (Exercise 11)
If $a^{24} = e$ in a group G, what are the possible orders of a?

Solution 5. Consider the subgroup $<a>$. Suppose the order of $<a>$ is n. Then $a^k = e$ if and only if $n \mid k$. Therefore $n \mid 24$. So the possibilities for the order of a are: 1, 2, 3, 4, 6, 8, 12, 24.

Problem 6. (Exercise 23)
Let $a, b \in G$. Prove the following statements.
(a) The order of a is the same as the order of a^{-1}.
(b) For all $g \in G$, $|a| = |g^{-1}ag|$.
(c) The order of ab is the same as the order of ba.

Solution 6.
(a) To turn in.
Suppose \(|a| = n \) and \(|g^{-1}ag| = m \). Then \(a^n = e \). But

\[
(g^{-1}ag)^n = g^{-1}a^n g = g^{-1}eg = e,
\]

so \(m \mid n \). Similarly \((g^{-1}ag)^m = e \). But then \(g^{-1}a^m g = e \). So then \(a^m = gg^{-1} = e \). Therefore \(n \mid m \).

Therefore \(|a| = |g^{-1}ag| \).

So the statement is easy to prove when \(G \) is finite. What about when \(G \) is infinite? When \(G \) is infinite but \(<a> \) and \(<g^{-1}ag> \) are finite, one can follow the same proof as above. If \(<a> \) is finite, then \(<g^{-1}ag> \) is also finite because whenever \(a^k = e \), then \((g^{-1}ag)^k = e \) (as shown above). Similarly, if \(<g^{-1}ag> \) is finite \(<a> \) is also finite. Therefore we’re only left with the problem of what happens when both \(<a> \) and \(<g^{-1}ag> \) are infinite.

To prove that \(a \) has the same order as \(g^{-1}ag \) we need to show that there is a bijection from \(<a> \) to \(<g^{-1}ag> \). Let \(f: <a> \rightarrow <g^{-1}ag> \) be defined by \(f(x) = g^{-1}xg \). Let’s show that \(f \) is a bijection. First we must show that the image of \(f \) is indeed contained in \(<g^{-1}ag> \). Let \(h \in <a> \). Then there exists a \(k \in \mathbb{Z} \) such that \(a^k = h \). Now, \((g^{-1}ag)^k = g^{-1}a^k g = f(h) \). Therefore \(f(h) \in <g^{-1}ag> \). So \(f \) is indeed a function from \(<a> \) to \(<g^{-1}ag> \).

Now we need to show \(f \) is one-to-one and onto. Suppose \(f(h_1) = f(h_2) \). Then there exist integers \(k_1 \) and \(k_2 \) such that \(f(h_1) = g^{-1}a^{k_1}g \) and \(f(h_2) = g^{-1}a^{k_2}g \). Therefore \(g^{-1}a^{k_1}g = g^{-1}a^{k_2}g \). So \(a^{k_1-k_2} = e \). Since \(<a> \) is infinite, then \(k_1 = k_2 \). Therefore \(f \) is one-to-one.

Now let’s prove that \(f \) is onto. Let \(h \in <g^{-1}ag> \). Then \(h = (g^{-1}ag)^k \) for some \(k \in \mathbb{Z} \). Therefore \(h = g^{-1}a^k g = f(a^k) \). Since \(a^k \in <a> \) and \(f(a^k) = h \), then \(f \) is onto.

Since \(f \) is a bijection, the order of \(<a> \) is equal to the order of \(<g^{-1}ag> \).

Alternative Solution: The proof above is not the easiest when \(<a> \) and \(<g^{-1}ag> \) are both infinite. So let’s give another proof for this case: If \(<a> \) is infinite, \(|a| = |\mathbb{N}| \) because \(<a> = \{a^k : k \in \mathbb{Z}\} \) has at most \(\mathbb{Z} \) elements and \(|\mathbb{Z}| = |\mathbb{N}| \). Similarly \(|<g^{-1}ag>| = |\mathbb{N}| \). So the orders are the same.

(c) To turn in.

Problem 7. (Exercise 26)
Prove that \(\mathbb{Z}_p \) has no nontrivial proper subgroups if \(p \) is prime.

Solution 7. \(\mathbb{Z}_p = \langle 1 \rangle \). Suppose \(H \) is a nontrivial subgroup of \(\mathbb{Z}_p \). Since \(\mathbb{Z}_p \) is cyclic, \(H \) must be cyclic. Suppose \(H = \langle b \rangle \). But \(b = b \cdot 1 \). Therefore the order of \(b \) is \(p \). \(p = \gcd(b,p) = p \). But then \(H = \mathbb{Z}_p \). So the only subgroups of \(\mathbb{Z}_p \) are \(\{0\} \) and \(\mathbb{Z}_p \).

Problem 8. (Exercise 31)
Let \(G \) be an abelian group. Show that the elements of finite order in \(G \) form a subgroup. This subgroup is called the **torsion subgroup** of \(G \).

Solution 8. To turn in.