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Stirling’s formula is a famous asymptotic formula to compute n!, the formula states

n! ∼
(n
e

)n√
2πn.

There are several ways to derive this formula, this note is meant to work on getting
approximations to the formula without too much work. In this note we will use the following
notation conventions for x a real number:

• bxc is the integer part of x, i.e., the largest integer less than or equal to x.

• {x} is the fractional part of x, i.e., {x} = x− bxc.

• A function f(x) is said to be O(g(x)) if there is a constant C such that f(x) ≤ C|g(x)|
for large enough values of x.

• A function f(x) is said to be o(g(x)) if lim
x→x

f(x)

g(x)
= 0.

• log(x) is the natural logarithm of x, i.e., if y = log x then ex = y.

• N = {1, 2, 3, . . .} is the set of natural numbers.

Stirling’s formula is equivalent to

log (n!) = n log n− n+ (1/2) log n+ (1/2) log (2π) + o(1).

In this note we will prove the following two theorems:

Theorem 1. For n ∈ N, log (n!) = n log n− n+O(log n).

Theorem 2. For n ∈ N, log (n!) = n log n− n+ (1/2) log n+O(1).

A quick corollary of Theorem 2 is that

n! = O
((n

e

)n√
n
)
.

Proof of Theorem 1. Because log (ab) = log a+ log b we have

log (n!) = log 1 + log 2 + log 3 + . . .+ log n =
∑
k≤n

log n ≈
∫ n

1

log t dt.

1



By using a left Riemann sum on
∫ n

1
log t dt we have

(log 1 + log 2 + log 3 + . . .+ log (n− 1)) + log n ≤
(∫ n

1

log t dt

)
+ log n

= n log n− n+ 1 + log n

= n log n− n+O(log n).

On the other hand using a right Riemann sum we get

log 2 + log 3 + log 4 + . . .+ log n ≥
∫ n

1

log t dt = n log n− n.

Therefore n log n− n ≤ log (n!) ≤ n log n− n+ 1 + log n, and hence
log (n!) = n log n− n+O(log n).

�

To prove the second theorem we’ll use the following useful result known as “partial sum-
mation” or “Abel summation”:

Proposition 1 (Abel summation). Let {an} be a sequence and let f : R→ R be a differen-
tiable function. Define A(x) to be

A(x) =
∑
n≤x

an = a1 + a2 + a3 + . . .+ abxc.

Partial summation is the following identity:∑
a≤n≤b

anf(n) = A(b)f(b)− A(a)f(a)−
∫ b

a

A(t)f
′
(t) dt.

Proof of Theorem 2. As stated before

log (n!) =
∑

1≤k≤n

log k.

Using Abel summation with an = 1 and f(n) = log n we have∑
1≤k≤n

log k = n log n− 1 log 1−
∫ n

1

btc
t
dt

= n log n−
∫ n

1

t− {t}
t

dt

= n log n− n+ 1 +

∫ n

1

{t}
t
dt

= n log n− n+

∫ n

1

{t}
t
dt+O(1).

Therefore proving the theorem comes down to proving that∫ n

1

{t}
t
dt =

1

2
log n+O(1),
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which boils down to proving ∫ n

1

{t} − 1/2

t
dt = O(1). (1)

We’ll finish by proving (1). We’ll break the integral into n − 1 parts, so that we can be
able to get a grip on {t}:∫ n

1

{t} − 1/2

t
dt =

n−1∑
k=1

∫ k+1

k

{t} − 1/2

t
dt.

Now let’s perform the change of variable t→ t− k in the inner integral:∫ k+1

k

{t} − 1/2

t
dt =

∫ 1

0

t− 1/2

t+ k
dt

= 1− (k + 1/2)

∫ 1

0

1

t+ k
dt

= 1− (k + 1/2) log

(
k + 1

k

)
= 1− (k + 1/2) log

(
1 +

1

k

)
.

We now use the Taylor series for log (1 + x) = x− x2/2 + x3/3− . . . to get:(
k +

1

2

)
log

(
1 +

1

k

)
=

(
k +

1

2

)(
1

k
− 1

2k2
+ . . .

)
= 1− 1

2k
+

1

3k2
− . . .+ 1

2k
− 1

4k2
+ . . .

= 1 +

(
1

3k2
− 1

4k2

)
−
(

1

4k3
− 1

6k3

)
+

(
1

5k4
− 1

8k4

)
. . .

= 1 +
1

12k2
− 1

12k3
+

3

40k4
− . . .

= 1 +O

(
1

k2

)
.

Therefore, ∫ n

1

{t} − 1/2

t
dt =

n−1∑
k=1

∫ k+1

k

{t} − 1/2

t
dt

=
n−1∑
k=1

(
1− (k + 1/2) log

(
1 +

1

k

))

=
n−1∑
k=1

O

(
1

k2

)
= O(1).
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