Final Practice Exam Math 230

- 1. Prove or disprove that the Boolean expressions $x \to \neg y$ and $\neg(x \to y)$ are logically equivalent.
- 2. Find counterexamples to disprove the following statements:
 - (a) An integer x is positive if and only if x + 1 is positive.
 - (b) An integer is a *palindrome* if it reads the same forwards and backwards when expressed in base 10. For example, 1331 is a *palindrome*. All *palindromes* are divisible by 11.
 - (c) If a, b and c are positive integers then $a^{(b^c)} = (a^b)^c$.
 - (d) Let A, B and C be sets. Then A (B C) = (A B) C.
- 3. Let a be an integer. Prove that if $a \ge 3$, then $a^2 > 2a + 1$.
- 4. Let A, B, C be sets. Prove that $A \times (B \cap C) = (A \times B) \cap (A \times C)$.
- 5. Prove that the following identities are true for all positive integers n:
 - (a) $1 + 5 + 9 + \ldots + (4n 3) = 2n^2 n$.
 - (b) $1 + 10 + 10^2 + \ldots + 10^n = \frac{10^{(n+1)} 1}{9}$.
- 6. Prove that the following inequalities are true:
 - (a) $e^n > n+7$, for $n \ge 3$.
 - (b) $n^2 \ge 6n + 2$, for $n \ge 7$.
- 7. Prove that $\sqrt{2}$ is irrational.
- 8. For each of the following relations defined on the set $\{1, 2, 3\}$ determine whether they are reflexive, irreflexive, symmetric, antisymmetric and/or transitive.
 - (a) $R = \{(1,1), (2,2), (3,3)\}.$
 - (b) $R = \{(1,1), (2,2), (3,3), (1,2)\}.$
 - (c) $R = \{(1,1), (2,2), (1,2), (2,1)\}.$
 - (d) $R = \{(1,2), (1,3), (2,3), (2,2)\}.$
- 9. 51 small insects are in a square of 1×1 . Prove that at least three insects are inside a circle of radius 1/7.
- 10. True or False:
 - (a) Two sets have the same cardinality if there exists a bijection from one of them to the other.

- (b) The cardinality of \mathbb{N} is the same as the cardinality of \mathbb{R} .
- (c) The cardinality of $2^{\mathbb{N}}$ is the same as the cardinality of \mathbb{R} .
- (d) The cardinality of (0, 1) is the same as the cardinality of [0, 1].
- (e) f(x) = 2x 1 is a bijection from (0, 1) to (0, 2).
- (f) If $f: A \to B$ is onto and $g: B \to C$ is onto, then $g \circ f$ is onto.
- (g) Suppose |A| > |B|, then there is no one-to-one function $f: B \to A$.
- (h) Cantor's theorem states that there is no onto function $f: A \to 2^A$.
- (i) Suppose $f: A \to B$ is one-to-one and $g: B \to A$ is one-to-one. Then f is onto.
- (j) $f(x) = \tan x$ is a bijection from (-1, 1) to \mathbb{R} .
- 11. Determine if the following sets are functions and **explain** why or why not:
 - (a) $f = \{(x, y) \mid x + y = 0\}.$
 - (b) $f = \{(x, y) \mid xy = 0\}.$
 - (c) $f = \{(x, y) \mid x \text{ divides } y\}.$
- 12. Prove or disprove whether the following functions are one-to-one:
 - (a) $f = \{(x, y) \mid x + y = 0\}.$
 - (b) $f : \mathbb{R} \to \mathbb{R}, f(x) = 7x 12.$
 - (c) $f = \{(1,1), (2,3), (3,2), (4,3)\}.$
- 13. Let P be the poset on the set $\{1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12\}$ defined by the "divides" relation, i.e., a is related to b if a|b.
 - (a) Does P have a maximum? What about a minimum?
 - (b) Find all the maximal elements of P.
 - (c) Find all the minimal elements of P.
 - (d) What is the height of P?
 - (e) What is the width of P?
 - (f) Is P a linear order? Why or why not?
- 14. Let A be the set of all finite posets. Prove that poset isomorphism is an equivalence relation on the set A. (Note: The poset $P = (X, \leq)$ is isomorphic to the poset $Q = (Y, \leq')$ if there exists an order-preserving bijection $f : X \to Y$. Recall that f is order-preserving if for any $a, b \in X, a \leq b \Leftrightarrow f(a) \leq' f(b)$.)
- 15. Let (X, \leq) be a totally ordered set (i.e., it is a linear order). Define the relation \leq on $X \times X$ as follows. If (x_1, y_1) and (x_2, y_2) are elements of $X \times X$, then we have $(x_1, y_1) \leq (x_2, y_2)$ provided either $(a)x_1 < x_2$ or else $(b)x_1 = x_2$ and $y_1 \leq y_2$. Prove that $(X \times X, \leq)$ is a linear order.