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25.2: We would need 367. There are 366 possible birthdays (including February 29), so we
need 367 to guarantee at least two people with the same birthday.

25.6: If two numbers match zeroes, then they satisfy that the zeroes of both numbers
are in the same positions among the 9 digits of the numbers. There are 512 configurations
of 0’s and not 0’s (indeed each digit is either a 0 or not a 0 and there are 9 digits, hence
29 = 512 configurations). Since we have 513 numbers, by the Pigeonhole principle at least
two of them have the same configuration of 0’s. Hence they match zeroes.

25.7: Consider the ones digit of the numbers. Consider the sets {1, 9}, {2, 8}, {3, 7}, {4, 6}, {0}, {5}.
There are seven integers and six sets. By pigeonhole principle there should be at least two
integers that have their ones digit (the remainder when dividing by 10) in one of these sets.
Call these numbers a and b. Then, either a and b have the same ones digits, and then a− b
is a multiple of 10, or they have a different ones digit, but then we have either 1+9, 2+8,
3+7 or 4+6 and in all cases we get a multiple of 10.

25.9: Break the square into 4 squares of side length 1/2 × 1/2 (i.e. draw the lines con-
necting the midpoints of opposing sides of the square). Since there are 5 points, at least two
of them must land in the same 1/2×1/2 square. The farthest apart two points can be inside
the square is if they are in opposing corners, hence√(
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apart. This is what we wanted to prove.

25.13: We’ll write the proof in a similar way to the proof of the Erdős-Szekeres theo-
rem in the book. Let S be our sequence of 1001 numbers. Let i be the i-th element of the
sequence. Let ui (u for up) be the length of the longest increasing subsequence of S starting
at i-th element of the sequence. Let di (d for down) be the length of the longest decreasing
subsequence of S starting at the i-th element of the sequence. Let ci (c for constant) be the
length of the longest constant subsequence of S starting at the i-th element of S. For each i
consider the triple (ui, di, ci). For the sake of contradiction, suppose that there is no increas-
ing sequence of length 11 (or more), no decreasing sequence of length 11 (or more) and no
constant subsequence of length 11 (or more). Then ui, di, ci ≤ 10 for all i. But ui, di, ci ≥ 1.
Therefore there are at most 103 = 1000 possible triples (ui, di, ci). Therefore, by Pigeonhole
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Principle, there are at least two numbers i < j such that (ui, di, ci) = (uj, dj, cj). Let a be
the i-th element of the sequence and b be the j-th element of the sequence. We have three
possibilities for a and b.

Case 1: If a < b, then ui ≥ uj + 1 because we can incorporate a to the longest increasing
subsequence starting at b. Therefore ui 6= uj, which is a contradiction.

Case 2: If a > b, then di ≥ dj + 1 because we can incorporate a to the longest decreasing
subsequence starting at b. Therefore di 6= dj. Contradiction.

Case 3: If a = b, then ci ≥ cj + 1 because we can incorporate a to the longest constant subse-
quence starting at b. Therefore ci 6= cj. Contradiction.

In all three cases we reach a contradiction. Therefore our assumption that there isn’t an
increasing subsequence of length 11, or a decreasing subsequence of length 11 or a constant
subsequence of length 11 is false. Therefore there is such a subsequence.

Remark 1. You might note I defined ui in terms of the i-th element of the sequence and
not ux in terms of the element x of the sequence. The reason is that the integers are not
necessarily distinct, so if we define ux and there are multiple x’s in the sequence, the definition
is ambiguous. By stating that I am defining it in terms of the placement in the sequence, we
break the ambiguity.

26.1:
a) f ◦ g = {(2, 2), (3, 2), (4, 2)} and g ◦ f = {(1, 1), (2, 1), (3, 1)}. g ◦ f 6= f ◦ g.
b) f ◦ g = {(2, 2), (3, 3), (4, 4)} and g ◦ f = {(1, 1), (2, 2), (3, 3)}. g ◦ f = f ◦ g.
c) f ◦ g is undefined. g ◦ f = {(1, 0), (2, 5), (3, 3)}. g ◦ f 6= f ◦ g.
d) f ◦ g = {(1, 4), (2, 4), (3, 1), (4, 1)} and g ◦ f = {(1, 4), (2, 4), (3, 4), (4, 1)}. g ◦ f 6= f ◦ g.
e) f ◦ g = {(1, 4), (2, 5), (3, 1), (4, 2), (5, 3)} = g ◦ f . g ◦ f = f ◦ g.
f)

f ◦ g(x) = f(x2 + 1) = (x2 + 1)2 − 1 = x4 + 2x2,

and
g ◦ f(x) = g(x2 − 1) = (x2 − 1)2 + 1 = x4 − 2x2 + 2.

g ◦ f(0) 6= f ◦ g(0), so g ◦ f 6= f ◦ g.
g)

f ◦ g(x) = f(x− 7) = (x− 7) + 3 = x− 4,

and
g ◦ f(x) = g(x + 3) = (x + 3)− 7 = x− 4.

Therefore g ◦ f(x) = f ◦ g(x).
h)

f ◦ g(x) = f(2− x) = 1− (2− x) = x− 1,

and
g ◦ f(x) = g(1− x) = 2− (1− x) = x + 1.

g ◦ f(0) 6= f ◦ g(0), so g ◦ f 6= f ◦ g.
i) f ◦ g is undefined because g(−1) = 0 so f(g(−1)) is undefined.

g ◦ f(x) = g

(
1

x

)
=

1

x
+ 1.

2



Since f ◦ g is undefined, then g ◦ f 6= f ◦ g.
j) Since A 6= B and A ⊆ B, there is an x ∈ B such that x 6∈ A. For this x, g(x) = idB(x) = x,
but f(x) = idA(x) is undefined. Therefore f ◦ g is undefined.

g ◦ f(x) = g(f(x)) = g(idA(x)) = g(x) = idB(x) = x.

Since f ◦ g is undefined, then g ◦ f 6= f ◦ g.

26.7: Let A and B be sets and f : A → B and g : B → A such that g ◦ f = idA and
f ◦ g = idB. We want to prove that f is invertible, i.e, that f is one-to-one. We also want
to prove that g = f−1.

Let’s start by proving that f is one-to-one. Suppose that f(x) = f(y). Then g(f(x)) =
g(f(y)), so g ◦ f(x) = g ◦ f(y), but g ◦ f = idA, so idA(x) = idA(y), and therefore x = y.
Hence f is one-to one, which implies that f is invertible.

Let’s now prove that g = f−1:
We’ll start by proving that f is onto. Let y ∈ B. Since y ∈ B, then g(y) ∈ A. Now

f ◦ g(y) = idB(y) = y and f ◦ g(y) = f(g(y)). So f(g(y)) = y, so f is onto.
Since f is one-to-one, f−1 exists and its domain is the image of f . Since f is onto, the

image of f is B, so f−1 : B → A. Therefore the domain of f−1 equals the domain of g.
Now we just need to prove that for y ∈ B, f−1(y) = g(y). Since f is onto, there exists an

x ∈ A such that f(x) = y. Therefore

f−1(y) = f−1(f(x)) = f−1 ◦ f(x) = idA(x) = x,

and
g(y) = g(f(x)) = g ◦ f(x) = idA(x) = x.

Therefore f−1(y) = g(y). Therefore g = f−1.

26.9: Let A, B, C be sets and f : A→ B and g : B → C.
a) Suppose f and g are one-to-one. Let’s prove g ◦ f is also one-to-one. Suppose

g ◦ f(x) = g ◦ f(y). Then g(f(x)) = g(f(y)). Since g is one-to-one then f(x) = f(y). Since
f is one-to-one then x = y. Hence g ◦ f is one-to-one.

b) Suppose f and g are onto. Let’s prove g ◦ f is onto. Suppose c ∈ C. Since g is onto,
there exists a b ∈ B such that g(b) = c. Since f is onto, there exists an a ∈ A such that
f(a) = b. Therefore g(f(a)) = c. Therefore g ◦ f(a) = c. Therefore g ◦ f is onto.

c) Suppose f and g are bijections. Let’s prove g ◦ f is a bijection. Since f and g are
one-to-one, then g ◦ f is one-to-one. Since f and g are onto, then g ◦ f is onto. Since g ◦ f
is one-to-one and onto, then g ◦ f is a bijection.

26.10: The functions in (e) of exercise 26.1 work, i.e., A = {1, 2, 3, 4, 5} with

f = {(1, 2), (2, 3), (3, 4), (4, 5), (5, 1)},

and
g = {(1, 3), (2, 4), (3, 5), (4, 1), (5, 2)}.

Note that g is not the inverse of f , that neither is the identity and that

f ◦ g = {(1, 4), (2, 5), (3, 1), (4, 2), (5, 3)} = g ◦ f.
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You might be wondering “what’s so special about these two functions?” Both of them are
permutations of the set {1, 2, 3, 4, 5}, one of them is a translation by 1 and the other by 2.
So the composition is translating by 3. This kind of construction can be easily generalized
to find many more functions with the property of f ◦ g = g ◦ f . An interesting question is
whether we can characterize all of the pairs of functions (f, g) with such a property.
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