Induction Proof Practice

1. Prove that for any positive integer n,

$$1+3+6+\cdots+\frac{n(n+1)}{2}=\frac{n(n+1)(n+2)}{6}.$$

2. Prove that for any positive integer n,

$$2^{n} > n$$
.

- 3. Prove by induction that the number of subsets of a set with n elements is 2^n .
- 4. Prove that every positive integer n > 1, has a prime divisor.
- 5. Evaluate the sum

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \frac{1}{3\cdot 4} + \dots + \frac{1}{999\cdot 1000}.$$

Solutions

1. Proof. For n = 1, the left side is 1 and the right side is $\frac{1 \cdot 2 \cdot 3}{6} = 1$.

Suppose the statement is true for n = k, namely, suppose that for some $k \ge 1$, we have

$$1+3+\cdots+\frac{k(k+1)}{2}=\frac{k(k+1)(k+2)}{6}.$$

Now, consider the case n = k + 1. We have

$$1+3+\dots+\frac{k(k+1)}{2}+\frac{(k+1)(k+2)}{2} = \left(1+3+\dots+\frac{k(k+1)}{2}\right)+\frac{(k+1)(k+2)}{2}$$
$$=\frac{k(k+1)(k+2)}{6}+\frac{(k+1)(k+2)}{2}$$
$$=\frac{(k+1)(k+2)}{6}\left(k+3\right)=\frac{(k+1)(k+2)(k+3)}{6}.$$

Therefore, we've shown that when it's true for k, it implies it's true for k + 1. We've finished the proof by induction.

2. *Proof.* The base case is n=1 and we can see that $2^1=2>1$. Therefore it's true for n=1.

Let's assume that it's true for n=k, namely, suppose $2^k>k$. We have $2^{k+1}=2\cdot 2^k>2\cdot k\geq k+1$ whenever $2k\geq k+1$, which is true for $k\geq 1$. Therefore, $2^{k+1}>k+1$ and hence we've proved the general statement by induction.

3. Proof. For n = 0, we have that the only subset of a set with zero elements is the empty set. Therefore, it has one subset. But $2^0 = 1$, so the statement is true for n = 0. For n = 1, let $A = \{a\}$ be our set with one element. Then the only subsets are \emptyset and $\{a\}$. Therefore, it has two subsets. Since $2^1 = 2$, we have that the statement to be proved is true for n = 1. We have out base case.

Now, for an integer $k \ge 1$, suppose that the number of subsets of a set with k elements is 2^k . This will be the induction hypothesis.

Suppose $A = \{a_1, a_2, \ldots, a_k, a_{k+1}\}$ is a subset with k+1 elements. Let's consider all the subsets. Let T be the set of subsets of A that contain a_{k+1} and U be the set of subsets that don't contain a_{k+1} . Note that the set of subsets of A is the disjoint union of T and U. We're going to show that $|T| = |U| = 2^k$. First, let's consider U. The subsets of A that don't contain a_{k+1} are the subsets of $\{a_1, a_2, \ldots, a_k\}$. By the induction hypothesis, there are 2^k of these. Now consider the subsets of A that contain a_{k+1} . Once you ignore that term, the rest of the subset must be a subset of $\{a_1, a_2, \ldots, a_k\}$, so by the induction hypothesis there are 2^k of these. Therefore, the number of subsets of A is $|T| + |U| = 2^k + 2^k = 2^{k+1}$, which is what we wanted to prove.

- 4. Proof. For n=2, the prime divisor is 2. Suppose that all numbers $1 < i \le k$ have a prime factor. We want to show that k+1 also has a prime factor. If k+1 is prime, then it has a prime factor (itself). If k+1 is not prime, then there exist a, b satisfying $1 < a \le b < k+1$ such that k+1=ab. But then $1 < a \le k$. By the strong induction hypothesis, a has a prime factor p. But then p|a and a|k+1, so p|k+1. Therefore k+1 has a prime factor. Therefore, by strong induction, all integers greater than 1 have a prime factor.
- 5. Let's find a pattern:

$$\frac{1}{1 \cdot 2} = \frac{1}{2}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} = \frac{2}{3}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} = \frac{3}{4}$$

$$\frac{1}{1 \cdot 2} + \frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} = \frac{4}{5}.$$

It seems the pattern is that the sum up to $\frac{1}{(k-1)k}$ is $\frac{k-1}{k} = 1 - \frac{1}{k}$. This suggests the answer to the question is $\frac{999}{1000}$. Let's prove that the pattern persists by using induction:

Proof. The base case are the examples listed above. As our induction hypothesis suppose

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(k-1)k} = \frac{k-1}{k}.$$

Now, consider the next term:

$$\frac{1}{1\cdot 2} + \frac{1}{2\cdot 3} + \dots + \frac{1}{(k-1)k} + \frac{1}{k(k+1)} = \frac{k-1}{k} + \frac{1}{k(k+1)}$$

$$= \frac{1}{k(k+1)} ((k-1)(k+1) + 1)$$

$$= \frac{1}{k(k+1)} (k^2 - 1 + 1)$$

$$= \frac{k^2}{k(k+1)}$$

$$= \frac{k}{k+1}.$$

This completes the proof by induction.

3