Homework 1 Math 329: Number Theory

January 19, 2018

1 Easy

Problem 1. For each of the following pairs of integers, compute gcd(a, b) using the Euclidean algorithm.

- (a) a = 195, b = 90.
- (b) a = 144, b = 89.

Problem 2. For each of the following pairs of integers a, b, find integers x and y satisfying ax+by = gcd(a, b).

(a) a = 195, b = 90.

(b) a = 144, b = 89.

Problem 3. Let a, b be two integers with the following properties:

- a-b=8
- (a,b)[a,b] = 384.

Find the values of a and b. Hint : Use Problem 8.

Problem 4. Let *n* be a positive integer. Prove that gcd(n, n + 1) = 1.

Problem 5. Prove that if d|a and d|b, then d|(ax + by) for any integers x, y.

2 Medium

Problem 6. Let $\{a_1, a_2, \ldots, a_{99}\}$ be a permutation of $\{1, 2, \ldots, 99\}$. Show that the product

$$(a_1 - 1)(a_2 - 2) \cdots (a_{99} - 99)$$

is even.

Problem 7. Suppose we perform the Euclidean algorithm on positive integers a > b. In the Euclidean algorithm on a, b, label the remainders $r_1 > r_2 > \ldots > r_k > 0$, where r_k is the last nonzero remainder.

- (a) Show that each nonzero remainder r_m is less than $\frac{r_{m-2}}{2}$.
- (b) Deduce that the number of divisions is at most 2n + 1 where n is the integer such that $2^n \leq b < 2^{n+1}$.

For the next two problems, we'll use the following notation:

Let (a_1, a_2, \ldots, a_n) be the greatest common divisor of a_1, a_2, \ldots, a_n , and $[a_1, a_2, \ldots, a_n]$ be the least common multiple of a_1, a_2, \ldots, a_n .

Problem 8. Let a, b be positive integers. Prove

$$(a,b)[a,b] = ab.$$

Problem 9. Let a, b, c be positive integers. Prove

$$\frac{(a,b,c)^2}{(a,b)(b,c)(c,a)} = \frac{[a,b,c]^2}{[a,b][b,c][c,a]}$$

3 Hard

Problem 10. Let y > x > 1 be integers such that $x + y \le 100$. Alice is given x + y (the sum of the two numbers) and Bob is given xy (the product of the two numbers). They both know this set-up and that $y > x > 1, x + y \le 100$. The following conversation occurs:

- Alice says "Bob does not know the values of x and y."
- Bob says "Now I know the values of x and y."
- Alice says "Now I also know the values of x and y."

Assuming Alice and Bob are perfect logicians that don't lie. What are the values of x and y?