Homework 10 Math 329: Number Theory

April 24, 2018

1 Easy

Problem 1. Let μ be the Möbius function. The definition of μ is in problem 6. Find the following values of μ

- (a) $\mu(105)$.
- (b) $\mu(50)$.
- (c) $\mu(2018)$.

Problem 2. Let f(n) be the number of $j \le n$ satisfy $\mu(j) = 0$. For example f(10) = 3 since $\mu(4) = \mu(9) = \mu(8) = 0$. What is f(100)?

Problem 3. Let $\sigma(n)$ be the sum of the divisors of n, for example $\sigma(6) = 1 + 2 + 3 + 6 = 12$. Find $\sigma(5^{100})$.

Problem 4. Let $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$. Find a formula for $\sigma(n)$. (You may assume σ is multiplicative.)

Problem 5. We say that a number n is perfect if it is the sum of its proper divisors.¹ For example, the proper divisors of 6 are 1,2,3 and 6 = 1 + 2 + 3, so 6 is perfect. In other words, n is perfect if $\sigma(n) = 2n$. Let p be such that $2^p - 1$ is a prime number.² Prove that $n = 2^{p-1}(2^p - 1)$ is a perfect number.

2 Medium

Problem 6. Let μ be the Möbius function, i.e.,

 $\mu(n) = \begin{cases} 1 & \text{if } n = 1\\ (-1)^k & \text{if } n = p_1 p_2 \cdots p_k \text{ for distinct primes } p_1, p_2 \dots p_k\\ 0 & \text{if there exists a positive integer } m \text{ such that } m^2 | n \end{cases}$

Prove that μ is multiplicative.

Problem 7. Prove

$$\sum_{d|n} \mu(d) = \begin{cases} 1 & \text{if } n = 1\\ 0 & \text{otherwise} \end{cases}$$

Problem 8. Let $\omega(n)$ be the number of distinct prime factors of n and $\tau(n)$ be the number of positive divisors of n. Prove

$$\sum_{d|n} 2^{\omega(d)} = \tau(n^2).$$

¹A proper divisor d of n, is a divisor of n smaller than n.

²primes of the form $2^p - 1$ are called Mersenne primes.

Problem 9. Let $\lambda(1) = 1$ and $\lambda(n) = (-1)^{\alpha_1 + \alpha_2 + \ldots + \alpha_r}$ if $n = p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_r^{\alpha_r}$.

- (a) Prove that λ is totally multiplicative.
- (b) Prove that

$$\sum_{d|n} \lambda(d) = \begin{cases} 1 & \text{ if } n \text{ is a square} \\ 0 & \text{ otherwise} \end{cases}$$

3 Hard

Problem 10. For each positive integer n, let $\tau(n)$ be the number of divisors of n. Find all positive integers such that

$$n + \tau(n) = (\tau(n))^2.$$

Problem 11. Let q be an odd positive integer, and let N_q denote the number of integers a such that 0 < a < q/4 and gcd(a,q) = 1. Show that N_q is odd if and only if q is of the form p^k with k a positive integer and p a prime congruent to 5 or 7 modulo 8.

Problem 12. Let f(n) be the number of remainders a modulo 10^n for which there exists an integer x such that $x^2 \equiv a \mod 10^n$. For example, when n = 1, we have that $\{0, 1, 4, 5, 6, 9\}$ are the remainders modulo 10 for which there is an integer x satisfying $x^2 \equiv a \mod 10$. Therefore f(1) = 6.

Find

$$\lim_{n \to \infty} \frac{f(n)}{10^n}.$$