Homework 10 Math 329: Number Theory

April 24, 2018

1 Easy

Problem 1. Let μ be the Möbius function. The definition of μ is in problem 6. Find the following values of μ
(a) $\mu(105)$.
(b) $\mu(50)$.
(c) $\mu(2018)$.

Problem 2. Let $f(n)$ be the number of $j \leq n$ satisfy $\mu(j)=0$. For example $f(10)=3$ since $\mu(4)=\mu(9)=$ $\mu(8)=0$. What is $f(100)$?
Problem 3. Let $\sigma(n)$ be the sum of the divisors of n, for example $\sigma(6)=1+2+3+6=12$. Find $\sigma\left(5^{100}\right)$.
Problem 4. Let $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$. Find a formula for $\sigma(n)$. (You may assume σ is multiplicative.)
Problem 5. We say that a number n is perfect if it is the sum of its proper divisors. ${ }^{1}$ For example, the proper divisors of 6 are $1,2,3$ and $6=1+2+3$, so 6 is perfect. In other words, n is perfect if $\sigma(n)=2 n$. Let p be such that $2^{p}-1$ is a prime number. ${ }^{2}$ Prove that $n=2^{p-1}\left(2^{p}-1\right)$ is a perfect number.

2 Medium

Problem 6. Let μ be the Möbius function, i.e.,

$$
\mu(n)= \begin{cases}1 & \text { if } n=1 \\ (-1)^{k} & \text { if } n=p_{1} p_{2} \cdots p_{k} \text { for distinct primes } p_{1}, p_{2} \ldots p_{k} \\ 0 & \text { if there exists a positive integer } m \text { such that } m^{2} \mid n\end{cases}
$$

Prove that μ is multiplicative.
Problem 7. Prove

$$
\sum_{d \mid n} \mu(d)= \begin{cases}1 & \text { if } n=1 \\ 0 & \text { otherwise }\end{cases}
$$

Problem 8. Let $\omega(n)$ be the number of distinct prime factors of n and $\tau(n)$ be the number of positive divisors of n. Prove

$$
\sum_{d \mid n} 2^{\omega(d)}=\tau\left(n^{2}\right)
$$

[^0]Problem 9. Let $\lambda(1)=1$ and $\lambda(n)=(-1)^{\alpha_{1}+\alpha_{2}+\ldots+\alpha_{r}}$ if $n=p_{1}^{\alpha_{1}} p_{2}^{\alpha_{2}} \cdots p_{r}^{\alpha_{r}}$.
(a) Prove that λ is totally multiplicative.
(b) Prove that

$$
\sum_{d \mid n} \lambda(d)= \begin{cases}1 & \text { if } n \text { is a square } \\ 0 & \text { otherwise }\end{cases}
$$

3 Hard

Problem 10. For each positive integer n, let $\tau(n)$ be the number of divisors of n. Find all positive integers such that

$$
n+\tau(n)=(\tau(n))^{2}
$$

Problem 11. Let q be an odd positive integer, and let N_{q} denote the number of integers a such that $0<a<q / 4$ and $\operatorname{gcd}(a, q)=1$. Show that N_{q} is odd if and only if q is of the form p^{k} with k a positive integer and p a prime congruent to 5 or 7 modulo 8 .

Problem 12. Let $f(n)$ be the number of remainders a modulo 10^{n} for which there exists an integer x such that $x^{2} \equiv a \bmod 10^{n}$. For example, when $n=1$, we have that $\{0,1,4,5,6,9\}$ are the remainders modulo 10 for which there is an integer x satisfying $x^{2} \equiv a \bmod 10$. Therefore $f(1)=6$.

Find

$$
\lim _{n \rightarrow \infty} \frac{f(n)}{10^{n}}
$$

[^0]: ${ }^{1}$ A proper divisor d of n, is a divisor of n smaller than n.
 ${ }^{2}$ primes of the form $2^{p}-1$ are called Mersenne primes.

