Homework 2 Math 329: Number Theory

January 26, 2018

1 Easy

Problem 1. Let $q_{1}=2$. Then for $n \geq 2$. define q_{n} to be the smallest prime factor of $q_{1} q_{2} \cdots q_{n-1}+1$. Find the first ten elements of the sequence, i.e., find $q_{1}, q_{2}, \ldots, q_{10}$.
Problem 2. Let $q_{1}=2$. Then for $n \geq 2$. define q_{n} to be the largest prime factor of $q_{1} q_{2} \cdots q_{n-1}+1$. Find the first ten elements of the sequence, i.e., find $q_{1}, q_{2}, \ldots, q_{10}$.
Problem 3. Suppose that n is the product of three consecutive integers and that n is divisible by 7. Which of the following is not necessarily a divisor of n ? Why?
(a) 6
(b) 14
(c) 21
(d) 28 (e) 42

Problem 4. Prove that if n is composite, it has a prime factor not exceeding \sqrt{n}.
Problem 5. Show that if $b \mid a$ and $c \mid a$ with $(b, c)=1$, then $b c \mid a$.

2 Medium

Problem 6. Let r be a positive integer. Prove that

$$
\underbrace{11 \cdots 1}_{2 r}-\underbrace{22 \cdots 2}_{r}
$$

is a square.
Problem 7. Prove that there are infinitely many primes of the form $6 k-1$.
Problem 8. Let $x \geq 7$ be a real number. Suppose there are only n primes, say $p_{1}, p_{2}, \ldots p_{n}$.
(a) Show that this would imply that there are at most $(2 \log x)^{n}$ numbers between 1 and x. Note: We use \log to refer to the natural $\operatorname{logarithm}$, i.e., $\log (e)=1$.
(b) Show that (a) implies that there are infinitely many primes.

Problem 9. Show that the number

$$
1+\frac{1}{2}+\frac{1}{3}+\cdots+\frac{1}{n}
$$

is not an integer for any integer $n>1$.

3 Hard

Problem 10. For a pair of positive integers a and b that are not multiples of 5 , the following list is constructed: The first number is 5 and, starting with the second number, each number is obtained by multiplying the previous number on the list by a and then adding b. What is the maximum number of primes that the list can have before obtaining the first composite number?

