Homework 3 Math 329: Number Theory

February 1, 2018

1 Easy

Problem 1. Find an integer $0 \leq r<997$ satisfying $r \equiv 2^{1000} \bmod 997$.
Problem 2. Prove that $2011^{1001}+2012^{1001}+2013^{1001}+2014^{1001}+2015^{1001}+2016^{1001}+2017^{1001}$ is a multiple of 7 .

Problem 3. Show that if n is odd, then $n^{2} \equiv 1 \bmod 8$.
Problem 4. Find an integer $0 \leq r<977$ such that $r \equiv 2^{972} \bmod 977$.
Problem 5. Prove that every palindrome with an even number of digits is a multiple of 11. Note: A number is a palindrome if it can be read from left-to-right or right-to-left and yield the same number. For example, 121, 5445 and 12521 are palindromes.

2 Medium

Problem 6. How many 40-digit palindromes are there that are multiples of 99 ?
Problem 7. Find all integers n with 7 digits where every digit is 3 or 7 , and that satisfy that $3 \mid n$ and $7 \mid n$.
Problem 8. Let $S=\{9,99,999, \ldots\}$. Prove that for any prime $p>5$, there are infinitely many members of S that are divisible by p.

Problem 9. The sum of the squares of two consecutive numbers can be equal a perfect square, namely $3^{2}+4^{2}=5^{2}$.
(a) Show that the sum of the squares of m consecutive integers cannot be a square if $m=3$ or $m=6$.
(b) Find an example of 11 consecutive integers where the sum of its squares is a square.

3 Hard

Problem 10. Determine all positive integers relatively prime to all the terms of the infinite sequence

$$
a_{n}=2^{n}+3^{n}+6^{n}-1, \quad n \geq 1
$$

Note: We say that a and b are relatively prime if $(a, b)=1$.

