Homework 4 Math 329: Number Theory

February 14, 2018

1 Easy

Problem 1. List the quadratic residues modulo 23.

Problem 2. For the following numbers n, calculate $\phi(n) = |\{k \le n \mid \gcd(k, n) = 1\}|$:

- (a) n = 40.
- (b) n = 210.

Problem 3. For the following numbers n, calculate $\sigma(n)$, the sum of the divisors of n:

- (a) n = 40.
- (b) n = 210.

Problem 4. Compute the last three digits of 57^{403} .

Problem 5. Compute $3^{300} \mod 343$.

$\mathbf{2}$ Medium

Problem 6. Show that for an integer n > 1, the sum of the positive integers less than n that are relatively prime to n is $\frac{n\phi(n)}{2}$. In other words, prove

$$\sum_{\substack{k \le n \\ (k,n)=1}} k = \frac{n\phi(n)}{2}.$$

Problem 7. Let n be positive.

- (a) Show that any solution of the equation $\phi(x) = 4n + 2$ is of the form $x = p^{\alpha}$ or $x = 2p^{\alpha}$ for some prime p of the form 4s - 1.
- (b) Deduce that there are no solutions to the equation $\phi(x) = 14$.

Problem 8. Find all primes p such that $13^{2p-1} + 17$ is divisible by p.

Problem 9. Let n be a positive integer. Show that there is a power of 3 greater than 1 whose final n digits are $\underbrace{00\cdots0}_{n-1}$ 1.

3 Hard

Problem 10. Prove that for each positive integer n, the number

 $10^{10^{10^n}} + 10^{10^n} + 10^n - 1$

is not prime.