Homework 4 Math 329: Number Theory

February 14, 2018

1 Easy

Problem 1. List the quadratic residues modulo 23.
Problem 2. For the following numbers n, calculate $\phi(n)=|\{k \leq n \mid \operatorname{gcd}(k, n)=1\}|$:
(a) $n=40$.
(b) $n=210$.

Problem 3. For the following numbers n, calculate $\sigma(n)$, the sum of the divisors of n :
(a) $n=40$.
(b) $n=210$.

Problem 4. Compute the last three digits of 57^{403}.
Problem 5. Compute $3^{300} \bmod 343$.

2 Medium

Problem 6. Show that for an integer $n>1$, the sum of the positive integers less than n that are relatively prime to n is $\frac{n \phi(n)}{2}$. In other words, prove

$$
\sum_{\substack{k \leq n \\(k, n)=1}} k=\frac{n \phi(n)}{2}
$$

Problem 7. Let n be positive.
(a) Show that any solution of the equation $\phi(x)=4 n+2$ is of the form $x=p^{\alpha}$ or $x=2 p^{\alpha}$ for some prime p of the form $4 s-1$.
(b) Deduce that there are no solutions to the equation $\phi(x)=14$.

Problem 8. Find all primes p such that $13^{2 p-1}+17$ is divisible by p.
Problem 9. Let n be a positive integer. Show that there is a power of 3 greater than 1 whose final n digits are $\underbrace{00 \cdots 0}_{n-1} 1$.

3 Hard

Problem 10. Prove that for each positive integer n, the number

$$
10^{10^{10^{n}}}+10^{10^{n}}+10^{n}-1
$$

is not prime.

